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1 Introduction

The failure of the expectations hypothesis first documented by Fama and Bliss (1987) and

Campbell and Shiller (1991) has attracted enormous attention in the asset pricing literature

over the past decades. The fundamental challenge was (and still is) to find the underly-

ing sources of bond return predictability. Uncovering these sources is important both for

market participants and for monetary policy makers. Such sources can arguably be cap-

tured by a plethora of forecasting factors, such as a forward spread (Fama and Bliss, 1987),

a forward rates factor (Cochrane and Piazzesi, 2005), realized jump risk measure (Wright

and Zhou, 2009), a hidden term structure factor (Duffee, 2011), and macroeconomic vari-

ables (Ludvigson and Ng, 2009; Huang and Shi, 2012). However, what is the particular

economic mechanism behind bond return predictability still remains an open question for

the profession, and our paper focuses on this issue.

In this paper we build a long-run risk model with time-varying volatility of the volatility

of the endowment process and money non-neutrality, with the purpose of understanding the

economic drivers of the time variation of bond returns. The model allows us to disentangle

short-run and long-run risks in bond returns. In particular, the endowment growth volatility

of volatility (vol-of-vol) factor as in Bollerslev, Tauchen, and Zhou (2009) explains variation

in short-horizon (one- and three-month) returns, whereas a persistent component as in Bansal

and Yaron (2004) has more information for long-horizon (one-year) returns. While the exist-

ing literature since Fama and Bliss (1987) and Campbell and Shiller (1991) has documented

predictability of long-horizon bond returns, papers exploring short-horizon predictability are

almost non-existent, with the exceptions of Zhou (2009) and Mueller, Vedolin, and Zhou

(2011). To our knowledge, this paper is the first to to reconcile these findings within a

structural framework. Our proposed model includes both factors—endowment growth vol-

of-vol factor and a persistent component of the aggregate growth in the economy—with

Epstein-Zin-Weil recursive preferences and, therefore, allows for both types of predictability.

In order to match the nominal term structure of interest rates and bond return pre-
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dictability, our model allows the inflation process to be affected by the endowment shock

and a uncertainty channel and so our model features money non-neutrality. Bansal and

Shaliastovich (2013) also link time variation in bond premia to a variation in volatility in

real activity and inflation, but they do not model uncertainty process explicitly. The key

in our model is the presence of real economic uncertainty, which enters through the time-

varying volatility of volatility (vol-of-vol) of the endowment process. Since inflation in our

model is affected by the real side growth and uncertainty shocks, prices in our model are

implicitly affected by nominal uncertainty as well. The assumption that the real side shocks

have effect on inflation results in the money non-neutrality feature—that is supported by

previous theoretical and empirical studies, such as Pennacchi (1991) and Sun (1992).

There are three key results in our paper. The first result in our paper is that the time

variation in the short-horizon bond risk premium is explained by the variance risk premium

derived from the interest rate swaptions market. The sign of the variance risk premium is

always positive, consistent with our structural model’s prediction. In our model, variance

risk premium is endogenously linked to the uncertainty factor—in fact, uncertainty factor

is the only driver of the variance risk premium. Mueller, Vedolin, and Zhou (2011) also

demonstrated short-horizon bond return predictability from equity variance risk premium,

although sometimes marginally significant. In our case, variance risk premium derived from

interest rate swaptions markets explains roughly 30 percent of the variation in one-month

excess bond returns and roughly 20 percent in three-month Treasury excess returns.

The second result in our paper is that the variance risk premium has limited forecasting

power for long-horizon returns, whereas factors like Fama-Bliss forward spread or Cochrane-

Piazzessi factor are most important. This indicates that the latter two variables capture

information related to the variation of the long-run risk factor—persistent component of the

endowment growth—more than that of the short-run risk factor—uncertainty or volatility-

of-volatility on the endowment growth. Theoretically, bond risk premium in our model is

related to the variation of the persistent component and to the uncertainty factor, and we

2



find that both factors are empirically important but along much different time horizons.

The third result comes from our calibration exercise and points out that the presence

of the persistent component in the endowment growth helps fitting the upward slope of the

Treasury yield curve. The absence of the long-run risk factor results in the flat or inverted

yield curve, and so the presence of the long-run risk seems to be important for explaining

the overall level of interest rates, in addition to its power for explaining the long-horizon

bond return predictability.

Our results have important implications as to which factors are at work for explaining

first and second moments of bond returns. It appears that the presence of the long-run

risk factor helps explaining the level of the interest rates, while the vol-of-vol factor helps

explaining the variation in the short-horizon interest rates. The variation in the long-horizon

returns appears to be related to a different kind, possibly more longer-run volatility factor

embedded in the aggregate endowment growth. While we do not model the two types of

volatilities explicitly, there is a growing existing literature that argues for the existence of the

short-run and long-run risk components of the aggregate volatility to study the variation of

stock returns (Adrian and Rosenberg, 2008; Christoffersen, Jacobs, Ornthanalai, and Wang,

2008; Branger, Rodrigues, and Schlag, 2011; Zhou and Zhu, 2012, 2013). We are the first,

to the best of our knowledge, to discover empirically that bond returns are also driven by a

similar two-factor volatility structure.

The rest of the paper is organized as follows. Section 2 presents our long-run risk model

with macro-economic uncertainty and asset pricing implications of the model, Section 3

discusses calibration of the Treasury yield curve implied by our model, Section 4 provides

overview of the interest rate swaptions market and introduces swaptions-based variance

risk premium measure, Section 5 describes all relevant data to our empirical exercise, and

Section 6 presents empirical results. Finally, Section 7 concludes.
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2 Model and Asset Pricing

2.1 Preferences

We consider a discrete-time endowment economy with recursive preferences for early reso-

lution of uncertainty introduced by Kreps and Porteus (1978), Epstein and Zin (1989), and

Weil (1989):

Ut =
[
(1− δ)C

1−γ
θ

t + δ
(
EtU1−γ

t+1

) 1
θ

] θ
1−γ

, (1)

where δ is the time discount factor, γ ≥ 0 is the risk aversion parameter, ψ ≥ 0 is the

intertemporal elasticity of substitution (IES), and θ = 1−γ
1− 1

ψ

. Preference for early resolution

of uncertainty is consistent with θ < 0. Note that a special case of recursive preferences -

constant relative risk aversion preferences - arises when γ = 1
ψ

(θ = 1).

Epstein and Zin (1989) show that the log-linearized form of the associated real stochastic

discount factor mt is given by:

mt+1 = θ ln δ − θ

ψ
gt+1 + (θ − 1)rc,t+1, (2)

where gt+1 = log
(
Ct+1

Ct

)
is the log growth of the aggregate consumption, rc,t+1 is a log

return on an aggregate wealth portfolio that delivers aggregate consumption as its dividend

each time period. Note that the return on wealth is different from the observed return on

the market portfolio because aggregate consumption is not equal to aggregate dividends.

Consequently, the return on wealth is not observable in the data.

In order to solve for nominal prices in the economy, such as nominal bonds, we specify

exogenous process for inflation πt+1. The nominal discount factor m$
t+1 is equal to the real

discount factor minus the inflation rate:

m$
t+1 = mt+1 − πt+1. (3)
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2.2 Economy dynamics

To solve for the equilibrium asset prices we specify consumption and inflation dynamics

featuring time-varying expected consumption growth rates, stochastic volatility of the con-

sumption growth rates, and time-varying vol-of-vol factor:

xt+1 = ρxxt + φeσg,tzx,t+1,

gt+1 = µg + xt + σg,tzg,t+1,

σ2
g,t+1 = aσ + ρσσ

2
g,t +

√
qtzσ,t+1,

qt+1 = aq + ρqqt + φq
√
qtzq,t+1.

(4)

The vector of shocks follows i.i.d. normal distribution with mean zero and unit variance and

shocks are assumed to be uncorrelated among themselves: (zx,t+1, zg,t+1, zσ,t+1, zq,t+1) ∼

N(0, I). Relevant state variables in our model are (i) xt - a predictable component of con-

sumption growth, (ii) σ2
t - stochastic volatility of consumption, and (iii) qt - economic un-

certainty variable.

The second pair of equations in (4) is new compared to the existing models of Bansal

and Yaron (2004), Bollerslev, Tauchen, and Zhou (2009), and Bansal and Shaliastovich

(2013). The economy features stochastic volatility of consumption growth rate, σg,t+1, which

is affected by the vol-of-vol factor qt. While qt proxies uncertainty of the real side of the

economy, it has a spill-over effect to the nominal side because inflation in the model is

affected by the real side uncertainty shocks, as we show below. Thus, implicitly, economy

is affected by both nominal and real side uncertainties. Inflation dynamics incorporates

stochastic volatility and uncertainty factors that affect real economy specified in (4). We

specify inflation πt+1 process as follows:

πt+1 = aπ + ρππt + φπzπ,t+1 + φπgσg,tzg,t+1 + φπσ
√
qtzσ,t+1, (5)

where ρπ is a persistence and aπ
1−ρπ is the long-run mean of the inflation process. There

5



are three shocks that drive inflation process: (1) a constant volatility part φπ with an

autonomous shock zπ,t+1, (2) a stochastic volatility part φπσσg,t that works through con-

sumption growth channel zg,t+1, and (3) another stochastic volatility part φπσ
√
qt that works

through the volatility channel zσ,t+1. Note that the exposure to zπ,t+1 does not generate an

inflation risk premium even if the volatility of this shock is time-varying, because this shock

is exogenous. The last two terms in (5) generate inflation risk premium because real side

shocks - stochastic volatility and uncertainty - affect inflation. Note also that since φπg and

φπσ control inflation exposures to the growth and uncertainty risks, this process implicitly

violates money-neutrality in the short run, but not in the long run.1

2.3 Pricing kernel

In equilibrium, the log wealth-consumption ratio zt is affine in expected growth xt, volatility

of the growth σ2
t , and economic uncertainty factor qt:

zt = A0 + Axxt + Aσσ
2
t + Aqqt. (6)

Campbell and Shiller (1988) show that the return on this asset can be approximated as

follows:

rc,t+1 = κ0 + κ1zt+1 − zt + gt+1, (7)

where κ0 = ln((1 + exp z̄)) − κ1z̄, κ1 = exp(z̄))
1+exp(z̄)

, and z̄ is the average wealth-consumption

ratio:

z̄ = A0(z̄) + Aσ(z̄)σ̄2 + Aq(z̄)q̄. (8)

1There is no violation of money neutrality in the long run because unconditional expectation of our
inflation process is Eπt = aπ

1−ρπ .
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The equilibrium loadings for (6) are derived in Appendix A.1:

Ax =
1− 1

ψ

1− κ1ρx
,

Aσ =
1

2θ(1− κ1ρσ)

[(
θ − θ

ψ

)2

+ (θκ1Axφe)
2

]
,

Aq =
1− κ1ρq −

√
(1− κ1ρq)2 − θ2κ4

1φ
2
qA

2
σ

θ(κ1φq)2
.

(9)

Recursive preferences along with the early resolution for uncertainty feature are crucial in

determining the sign of the equilibrium loadings into the state variables. When intertemporal

elasticity of substitution ψ > 1, the intertemporal substitution effect dominates the wealth

effect. This means that agents invest more in a response to higher expected endowment

growth, which contributes to a higher wealth-consumption ratio. Therefore, the loading on

the expected consumption growth is positive, Ax > 0. In times of high volatility and/or

uncertainty, agents sell off risky assets, and therefore, the wealth-consumption ratio falls.

Thus, Aσ < 0 and Aq < 0.2 At the same time, equation (6) underscores the difference

between Bansal and Yaron (2004) and our model.

Euler equation imposes equilibrium restrictions on the asset prices:

E[exp(mt+1 + rt+1)] = 1, (10)

This equation should hold for any asset, and for rc,t+1 as well. The solutions of A coefficients

in Eq. (6) are obtained using Euler equation (10), return equation (7), and conjectured z

dynamics (6). Explicit form for the approximate solutions is given in the Appendix A.3 This

solution allows us to obtain a pricing kernel mt+1 as a function of state variables and shocks

in the economy, and solve for equilibrium asset prices.

2The solution for Aq represents one of a pair of roots of a quadratic equation, but we pick the one
presented in Eq. (9) as the more meaningful one. We elaborate on this choice in Section A.1.

3Bansal, Kiku, and Yaron (2012) check that their approximate solutions are very accurate when compared
against numerical solutions, used, e.g., in Binsbergen, Brandt, and Koijen (2012).
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Using the solution for consumption-wealth ratio, the analytical expression for the equilib-

rium stochastic discount factor can be also written as a linear combination of state variables

and shocks in the economy. The innovation in the stochastic discount factor determines the

sources and the compensations for risks in the economy:

mt+1 − Et[mt+1] = −λgσg,tzg,t+1 − λxσg,tzx,t+1 − λσ
√
qtzσ,t+1 − λq

√
qtzq,t+1, (11)

where λg, λx, λσ, λq represent the market prices of risk of consumption growth, expected

consumption growth, volatility, and uncertainty:

λg = γ λσ = (θ − 1)κ1Aσφσ

λx = (θ − 1)κ1Axφe λq = (θ − 1)κ1Aqφq

(12)

The market price of the short-run consumption risk λg is equal to a coefficient of relative

risk aversion γ. Other risk prices of risk crucially depend on our preference assumptions.

If the agents have preference for early resolution of uncertainty (γ > 1
ψ

or, equivalently,

θ < 1), then the market price of long-run risk λx > 0. In this case, positive shocks to

consumption and expected consumption cause risk premia decrease, because in this case

consumption-wealth ratio is expected to increase and investors will be buying risky assets.

At the same time, when θ < 0, market prices of risk of volatility and uncertainty are negative:

Positive shocks to either volatility or uncertainty in the economy cause a sell-off of risk assets,

thus, consumption-wealth ratio falls and risk premia increase. The quantities of risks in our

economy are, of course, σg,t and
√
qt.
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2.4 Asset prices

2.4.1 Risk-free rate

First, we price the real risk-free rate, which is the negative of the (log) price of the real

one-period bond:

rf,t = −p1
t = −Et[mt+1]− 1

2
Vart[mt+1], (13)

The solutions for expectation and variance of the pricing kernel are given in Appendix A.2.

Combining the appropriate terms, we state the solution for the real risk-free rate:

rf,t = −θ ln δ + γ(µg + xt)− (θ − 1)[κ0 + (κ1 − 1)A0 + κ1(Aσaσ + Aqaq)]

− (θ − 1)[Ax(κ1ρx − 1)xt + Aσ(κ1ρσ − 1)σ2
g,t + Aq(κ1ρq − 1)qt]

− 1

2
γ2σ2

g,t −
1

2
(θ − 1)2κ2

1

[
A2
xφ

2
eσ

2
g,t + (A2

σ + A2
qφ

2
q)qt
]
.

(14)

Note that the last two terms in (14) represent Jensen’s inequality correction, while the

terms in the middle line represent the time-varying risk-premia in real interest rates. The

existence of this premia crucially depends on the assumption of the recursive utility, or θ 6= 1.

Moreover, the preference for early resolution of uncertainty (ψ > 1) insures that this risk

premium is strictly positive. When θ = 1, persistent component of endowment growth is

absent and the volatility of consumption growth is constant, the model reduces to the case

of CRRA utility and the risk-free rate reduces to a classical expression:

rf = − ln δ + γµg −
1

2
γ2σ2

g . (15)

The nominal risk-free rate is the negative of the (log) price of the nominal one period bond.

Thus, it is equal to the real risk free rate plus the inflation compensation. The closed form
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for the nominal risk-free rate is derived in Appendix A.4:

r$
f,t = −θ ln δ + γµg + aπ − (θ − 1)[κ0 + (κ1 − 1)A0 + κ1(Aσaσ + Aqaq)]−

1

2
φ2
π

+ [γ − (θ − 1)Ax(κ1ρx − 1)]xt

+

[
−(θ − 1)Aσ(κ1ρσ − 1)− 1

2
γ2 − 1

2
(θ − 1)2(κ1Axφe)

2 − 1

2
φ2
πg − γφπg

]
σ2
g,t

+

[
−(θ − 1)Aq(κ1ρq − 1)− 1

2
(θ − 1)2κ2

1(A2
σ + A2

qφ
2
q)−

1

2
φ2
πσ + (θ − 1)κ1Aσφπσ

]
qt

+ ρππt.

(16)

Since inflation is not an autonomous process, besides having a direct effect on the nominal

rates, ρππt, it affects loadings on σ2
t and qt via additional terms, 1

2
φ2
πg and 1

2
φ2
πσ, respectively.

This results in money non-neutrality: inflation has an effect on the economy.

2.4.2 The n−period bond price

A general recursion for solving for the n−period nominal bond price is as follows:4

P $,n
t = Et

[
M$

t+1P
$,n−1
t+1

]
. (17)

We assume that the (log) price of the n−period nominal bond p$,n
t follows the affine repre-

sentation of the real state variables xt, σ
2
t , qt and inflation πt:

p$,n
t = B$,n

0 +B$,n
1 xt +B$,n

2 σ2
t +B$,n

3 qt +B$,n
4 πt. (18)

We solve for the nominal bond state loadings B$,n
i , i = 0, . . . , 4 using the above recursion.5

The nominal n−period nominal yield is defined as y$,n
t = − 1

n
p$,n
t . The log zero-period nominal

bond price today p$,0
t = 0 (the log one-period bond price y$,1

t = r$
f,t). This gives us the initial

conditions for the solution: B$,0
i = 0, i = 0, . . . , 4, which, along with the state loadings, allow

4The solution for the n−period real bond price is provided in Appendix A.3.
5The solution is provided in Appendix A.5, equation (73).
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to solve explicitly for the n−period nominal bond price.

2.4.3 Bond risk premium

Let rx$,n−1
t+1 be the bond excess return from t to t+ 1 for an n−period nominal bond holding

one period. Then its expected value, or nominal bond risk premium, brp$,n
t , is given by the

covariance between the nominal pricing kernel m$,n−1
t+1 and the nominal bond price p$,n

t :

brp$,n
t = Covt

[
m$
t+1, p

$,n−1
t+1

]
=
[
−(γ + φπg)B

$,n−1
4 φπg + (θ − 1)κ1AxB

$,n−1
1 φ2

e

]
σ2
g,t

+
[
((θ − 1)κ1Aσ − φπσ)(B$,n−1

2 +B$,n−1
4 φπσ) + (θ − 1)κ1AqB

$,n−1
3 φ2

q

]
qt

−B$,n−1
4 φ2

π

≡ β$,n−1
1 σ2

g,t + β$,n−1
2 qt −B$,n−1

4 φ2
π.

(19)

The first two terms in (19) reflect consumption and uncertainty premiums amplified by

the endogenous inflation shock parameters φπg and φπσ while the third term captures the

autonomous inflation shock through φπ. Note that the effect of the long-run risk captured

by Ax amplifies the overall contribution of the consumption risk, σg,t. This effect is absent in

Zhou (2011), Mueller, Vedolin, and Zhou (2011), and thus, makes it more difficult to explain

the upward sloping term structure of the nominal yield curve.

2.4.4 Bond return predictability

Bollerslev, Tauchen, and Zhou (2009) show that the equity variance risk premium – the

difference in expectations of the equity variance under risk-neutral and physical measures –

is a useful predictor of time-variation in aggregate stock returns. Motivated by this result,

we apply this measure to understand time variation in bond returns. While we do not

derive the bond variance risk premium, it is fair to assume that temporal variation in stock

and bond markets is correlated. In our model, time-varying variance risk premium arises
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endogenously:

VRPt = EQ
t

[
σ2
r,t+1

]
− EP

t

[
σ2
r,t+1

]
= (θ − 1)κ1

[
Aσ(1 + κ2

1A
2
xφ

2
e) + Aqκ

2
1φ

2
q(A

2
σ + A2

qφ
2
q)
]
qt.

(20)

As equation (20) shows, time variation in the variance risk premium is due solely to time-

variation in uncertainty state variable qt. Note that consumption growth volatility does

not affect the variance risk premium (and thus, bond return predictability). Also, recursive

preferences γ 6= 1
ψ

along with the early resolution of uncertainty (ψ > 1) deliver positive vari-

ance risk premia. So, the dual assumption of recursive preferences and presence of economic

uncertainty is crucial for understanding bond return predictability. The common factor qt

in the nominal bond risk premium (19) and the variance risk premium (20) suggests that

the latter should capture some time variation of the former. Thus, ignoring a measurement

error, in a regression

brp$,n
t = a+ bVRPt, (21)

the model-implied slope coefficient b and R2 are given respectively,

b =
Cov(brpnt ,VRPt)

V ar(VRPt)
=

β$,n−1
2

(θ − 1)κ1

[
Aσ(1 + κ2

1A
2
xφ

2
e) + Aqκ2

1φ
2
q(A

2
σ + A2

qφ
2
q)
] (22)

and R2:

R2 =
b2Var(VRPt)

Var(brp$,n
t )

=

(
β$,n−1

2

)2

Var(qt)(
β$,n−1

1

)2

Var(σ2
g,t) +

(
β$,n−1

2

)2

Var(qt)
. (23)

As discussed in Section 2.4.4, the constant volatility of volatility case implies no time varia-

tion in variance risk premium, and therefore R2 ≡ 0. The other corner case, captured by the

absence of the long-run risk component, implies R2 = 1, which is the case that the variance
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risk premium can perfectly predict the bond risk premia, and the empirical predictability

pattern cannot be replicated. Metrics (22)-(23) can be used to evaluate whether the pro-

posed variable, and also proposed inflation dynamics can reproduce the empirical pattern of

bond return predictability.

3 Calibration

In this section we discuss the calibration of the yield curve implied by the real side model (4)

and inflation process (5). We consider two benchmark cases of parameters. One benchmark

case follows Bansal and Yaron (2004, BY) and Bollerslev, Tauchen, and Zhou (2009, BTZ)

that match the equity premium. In particular, we calibrate the yield curve with and without

the long-run risk component. BTZ differs from BY in that it incorporates time-varying

volatility of volatility in the model, and we differ from BTZ in that we add the long-run risk

to the real side of the model and also model inflation necessary to derive implications for

the nominal bond pricing.

We start with the calibration of the real economy, in particular, preferences, endowment

and uncertainty processes. Panel A of Table 1 provides these calibration values. We follow

BY choice for our preference choice parameters, by setting subjective time discount factor

δ = 0.997, γ = 8, and ψ = 1.5.6 Volatility parameters aσ and ρσ are set such that the uncon-

ditional expectation Eσ2
t = 0.00782, which is the value of the unconditional volatility process

used by Bansal and Yaron (2004). Uncertainty parameters aq, ρq, and φq are calibrated ac-

cording to Bollerslev, Tauchen, and Zhou (2009) by setting the long-run level of uncertainty

process Eqt = 10−6. Our choice of the volatility persistence parameter ρσ = 0.978 and the

vol-of-vol persistence parameter ρq = 0.8 is broadly consistent with the estimates of Boller-

slev, Xu, and Zhou (2013), who find that the long-run risk volatility (proxied by σgt) is more

persistent than the short-run risk (proxied by qt). Thus, this choice of the parameters links

our model calibration with the next empirical section where we show that these two types

6BY and BTZ use γ = 10, but in our model slightly lower value of γ works reasonably well.
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of risks in the bond premia are disentangled.

Panel B provides the calibration parameters for inflation process. Inflation level aπ

and persistence ρπ are set such that the average annualized annualized inflation rate Eπ =

aπ
1−ρπ = 2%.7 Persistence of the inflation rate is set to ρπ = 0.95 (which may be justified

for data after 1980s and especially after 2008). Using these values for Eπ and ρπ, implied

aπ = 0.02/12× 0.05 = 8× 10−5. Variance parameters are set such that the total annualized

inflation volatility is 2%. We assume that the first (autonomous) shock contributes one half

to the total variance while other two shocks contribute equally to the remaining half of the

total variance of inflation process.8 The total unconditional variance of the inflation process

is set as follows:

V ar[π] =
1

1− ρ2
π

[
φ2
π + φ2

πg

aσ
1− ρσ

+ φ2
πσ

aq
1− ρq

]
. (24)

Since ρπ = 0.95, aσ
1−ρσ ≡ Eσ2 = 0.00782, aq

1−ρq ≡ Eq = 10−6 the total unconditional inflation

variance on a monthly basis is:

[
φ2
π + φ2

πg × 0.782 × 10−4 + φ2
πσ × 10−6

]
= 0.022/12× (1− 0.952) = 3.25× 10−6. (25)

Thus, the contribution of the first shock to the total inflation variance is 0.5 × 3.25 ×

10−6 = 1.625 × 10−6, implying φπ = 0.0013. The contribution of the second and third

term is equal to each other and equal to 0.25 × 3.25 × 10−6 = 8.125 × 10−7. Thus, the

implied φπg = (8.125× 10−7/(0.782 × 10−4))
1/2

= −0.0385. As in BS, it is important for

fitting upward-sloping yield curve that the correlation between inflation and endowment

growth is negative, thus negative sign for this loading coefficient. Last, the implied φπσ =

(8.125× 10−7/10−6)
1/2

= 28.5.

Finally, Panel C of Table 1 provides Campbell-Shiller log-linearization constants κ0 and

κ1.

7Our inflation rate is more consistent with the current Fed target and lower than the one in Bansal and
Shaliastovich (2013, BS), who set it at 3.61% (see their Table 5).

8Equal distribution of variance among the shocks results in slight overshooting of the model-implied
interest rates levels relative to those in the sample.
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Figure 1 reports our calibration results. First, both panels show the average nominal

yield curve (blue solid line) in January 1991 - December 2010 sample period. Second, both

panels show the nominal yield curve (red dashed line) implied by our model without (Panel

A) and with (Panel B) the long-run risk component xt. It is obvious from Panel A that

absent long-run risk the model is not successful in fitting the upward-sloping yield curve,

even with the presence of economic uncertainty in the model. Alternatively, Panel B shows

that improvement due to the slow-moving predictable component in the endowment growth

is dramatic. Indeed, our model with xt appears to successfully capture the slope and the level

of the curve. The conclusion of this calibration exercise is that the level of the interest rates

appears to be tightly linked to the slow-moving predictable component in the endowment

growth.

4 Construction of the Variance Risk Premium

In this section we first overview the mechanics of interest rate swaptions and then discuss

construction of swaption-implied variance risk premium based on the variance contract on

swap rates defined in Li and Song (2014).

4.1 Interest rate swaptions

Consider a forward start fixed versus floating interest rate swap with a start date Tm and

maturity date Tn. The fixed annuity payments are made on a pre-specified set of dates,

Tm+1 < Tm+2 < · · · < Tn, with the intervals equally spaced by δ, which equals six months

in US swaption markets. The floating payments tied to the three-month LIBOR are made

quarterly at Tm+1 − δ/2, Tm+1, Tm+2 − δ/2, Tm+2, · · · , Tn − δ/2, and Tn.9

At time Tm, the value of the floating leg equals par, and the time–t value of the floating leg

is D (t, Tm), where D (t, T ) is the time–t price of a zero-coupon bond maturing at time T . The

9We assume that both the fixed and floating legs pay $1 principal at Tn.
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time–t value of the fixed leg is equal to D (t, Tn)+Am,n (t), where Am,n (t) ≡
∑n

j=m+1D (t, Tj)

is the present value of an annuity associated with the fixed leg of the forward swap contract,

also known as the “price value of the basis point” (PVBP) of a swap. The time-t forward

swap rate, Sm,n (t), is the rate on the fixed leg that makes the present value of the swap

contract equal to zero at t:

Sm,n (t) =
D (t, Tm)−D (t, Tn)

Am,n (t)
. (26)

This forward swap rate becomes the spot swap rate Sm,n (Tm) at time Tm.

A swaption gives its holder the right but not the obligation to enter into an interest rate

swap either as a fixed leg (payer swaption) or as a floating leg (receiver swaption) with a

pre-specified fixed coupon rate. The underlying security of a swaption is a forward start

interest rate swap contract. For example, let Tm be the expiration date of the swaption, K

be the coupon rate on the swap, and Tn be the final maturity date of the swap. The payer

swaption allows the holder to enter into a swap at time Tm with a remaining term of Tn−Tm

and to pay the fixed annuity of K. At time t, this swaption is usually called a (Tm − t) into

(Tn − Tm) payer swaption, also known as a (Tm − t) by (Tn − Tm) payer swaption, where

(Tm − t) is the option maturity and (Tn − Tm) is the tenor of the underlying swap. Because

the value of the floating leg will be par at time Tm, the payer swaption is equivalent to a put

option on a bond with a coupon rate K and a remaining maturity of Tn − Tm, where the

strike of this put option is $1. Similarly, the receiver swaption is equivalent to a call option

on the same coupon bond with the strike price of $1.

Let Pm,n(t;K) and Rm,n(t;K) denote the time-t value of a European payer and receiver

swaption, respectively, expiring at Tm with strike K on a forward start swap for the time

period between Tm and Tn. At the option expiration date Tm, the payer swaption has a

payoff of

[1−D (Tm, Tn)−KAm,n (Tm)]+ = Am,n (Tm) [Sm,n (Tm)−K]+ ,
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where equation (26) evaluated at Tm is used. Therefore, the time-t (< Tm) price of this payer

swaption is given by

Pm,n(t;K) = EQ
t

{
e−

∫ Tm
t r(s)dsAm,n (Tm) [Sm,n (Tm)−K]+

}
= Am,n (t)EAm,n

t

{
[Sm,n (Tm)−K]+

}
, (27)

where Q is the risk-neutral measure and Am,n is the annuity measure with Am,n (t) as the

numeraie. That is, the Radon-Nikodym derivative of the annuity measure with respect to

the risk-neutral measure is dAm,n
dQ = e−

∫ Tm
t r(s)ds Am,n(Tm)

Am,n(t)
. Similarly, the time-t price of the

receiver swaption is given by

Rm,n(t;K) = Am,n (t)EAm,n
t

{
[K − Sm,n (Tm)]+

}
. (28)

We note from (27) and (28) that a swaption is tied to two sources of uncertainty: (i) the

forward swap rate Sm,n (t), and (ii) the swap’s PVBP realized at time Tm, Am,n (Tm). The

change of measure from Q to Am,n allows us to focus on the risk of Sm,n (t) and facilitates

the pricing of swaptions.

4.2 Measure of swaption-implied variance risk premium

Variance swaps on equities allow one to hedge the risk of the realized variance of stock

returns. The variance contract on swap rates that we develop below allows us to hedge the

risk of the realized variance of interest rate swap rates. At time t, the short leg promises to

pay the long leg at Tm:

Am,n (Tm)

[(
ln
Sm,n(t+ ∆)

Sm,n(t)

)2

+

(
ln
Sm,n(t+ 2∆)

Sm,n(t+ ∆)

)2

+ · · ·+
(

ln
Sm,n(Tm)

Sm,n(Tm−∆)

)2
]
, (29)

the product of the realized variance of the log forward swap rate logSm,n(t) over [t, Tm] and

the PVBP Am,n (Tm). In return, the long leg pays the short leg Am,n (Tm)×VPm,n (t) at Tm,
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where VPm,n (t) is determined at time t such that the value of the contract equals zero at

initiation. We refer to VPm,n (t) as the variance price of the forward swap rate.

The variance contract on swap rates uses the sum of squared log changes to measure the

realized variance of forward swap rates over [t, Tm]. Similar to the payoff of a swaption, the

payoff of the variance contract on swap rates depends on the realized variance of forward

swap rates as well as an annuity discount factor. This design makes it convenient to obtain

the variance price VPm,n (t) by a change of the risk-neutral measure to the corresponding

annuity measure. It also makes it easier to replicate the variance contract using swaptions

given the similar payoff structures. The variance price VPm,n (t) is the Am,n-expectation of

the quadratic variation of the forward swap rate Sm,n(t) over [t, Tm].

Similar to the equity variance swap whose payoff can be replicated using a portfolio of

out-of-the-money equity options, the time-varying payoff of the variance contract on swap

rates can be replicated using a portfolio of out-of-the-money swaptions written on Sm,n(t).

In particular, generalizing the algorithm used by CBOE in constructing VIX, we have

IVm,n (t) ≡ 2

Am,n (t)

{∫
K>Sm,n(t)

1

K2
Pm,n(t;K)dK +

∫
K<Sm,n(t)

1

K2
Rm,n(t;K)dK

}
, (30)

where Tm − t is the time-to-maturity. As observed from (30), this replication portfolio

contains positions in out-of-the-money swaptions with a weight that is inversely proportional

to their strikes. A similar replication portfolio based on equity options has been employed

in the literature to construct model-free implied volatility measures (Bollerslev, Tauchen,

and Zhou, 2009; Carr and Wu, 2009). The swap-rate variance risk premium is defined as

the difference between this ex ante expectation of the future swap rate variation over [t,

Tm] under the annuity measure Am,n and the corresponding expectation under the physical

measure over the same time interval,

V RPm,n(t) ≡ IVm,n(t)− RVm,n(t). (31)
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5 Data and Estimates

In this section we describe the estimates of the swaptions-based variance risk premium,

Treasury yield data, and other control variables used in predictive regressions in Section 6.

5.1 Estimates of swaptions-based variance risk premium

We obtain daily LIBOR rates with maturities of 3, 6, 9, and 12 months, as well as daily 2-,

3-, 4-, 5-, 7-, 10-, 15-, 20-, 25-, 30-, and 35-year spot swap rates between June 1, 1993 and

January 31, 2013 from J.P. Morgan. We bootstrap the swap rates to first obtain daily zero-

curves. Then we construct the PVBP curve Am,n (t) and forward swap rate curve Sm,n (t)

up to 35 years according to (26).10

Daily observations of (European) swaption prices are combined from J.P. Morgan and

Barclays Capital, two of the largest inter-dealer brokers in interest rate derivatives markets.

We focus on 1-month expiry swaptions in line with the monthly frequency of our main

predictive regressions. In particular, we obtain one-month swaptions on six swap tenors (1,

2, 5, 10, 20, and 30 years). The market convention is to quote swaption prices in terms of

their log-normal implied volatility based on Black (1976) formula.11

The swaption prices from J.P. Morgan are available between June 1, 1993 and January 31,

2013 with five strikes, including at-the-money-forward (ATMF), ATMF ± 100, and ATMF

± 50 basis points. The swaption prices from Barclays are between December 1, 2004 and

January 31, 2013 with thirteen strikes, including ATMF, ATMF ± 200, ATMF ± 150, ATMF

± 100, ATMF ± 75, ATMF ± 50, and ATMF ± 25 basis points. In our empirical analysis,

we use the swaption prices from J.P. Morgan from June 1, 1993 through December 1, 2004

10We first use a standard cubic spline algorithm to interpolate the swap rates at semiannual intervals from
one year to 35 years. We then solve for the zero curve by bootstrapping the interpolated par curve with
swap rates as par bond yields. The day count convention is 30/360 for the fixed leg, and Actual/360 for the
floating leg.

11Many market participants think in terms of normal (or absolute or basis point) implied volatilities–the
volatility parameter that, plugged into the normal pricing formula, matches a given price–as they are more
uniform across the swaption grid and more stable over time than log-normal implied volatilities.
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and those from Barclays after December 1, 2004.12

To obtain swaption prices on a continuum of strikes as requested by Eq. (30), following

Carr and Wu (2009) and Du and Kapadia (2012), we interpolate implied volatilities across

the range of observed strikes and use implied volatility of the lowest (highest) available strike

to replace that of the strikes below (above). We further generate 200 implied volatility points

equally spaced over a strike range with moneyness between 0.9× Sm,n(t) and 1.1× Sm,n(t),

where Sm,n(t) is the current forward swap rate on each day.

Finally, as a proxy for physical expectation of swap-rate variance, we use intraday 10-year

interest rate swap quotes at five-minute intervals from 8:30 to 15:00 (following Wright and

Zhou (2009)) and then fit the HAR model to obtain expectation of the realized variance

under physical measure. Figure 3 plots implied variance, expected variance, and resulting

swaption-implied variance risk premium.

5.2 Treasury yield data

In our empirical exercise we use Fama-Bliss data set of zero-coupon Treasury yield data from

CRSP to compute excess returns of the bonds for two to five-year bonds. The sample period

of our study is January 1991 to December 2012, the frequency is monthly. In general, we

denote by r
(τ)
t+h = p

(τ−h)
t+h − p

(τ)
t , the h−period log return on a τ−year bond with the log price

p
(τ)
t . The excess bond return is defined as

rx
(τ)
t+h ≡ r

(τ)
t+h − y

(h)
t , (32)

where y
(h)
t is the h−period yield. In our application we consider h = 1, 3, and 12 months.13

The summary statistics of the Treasury excess returns is presented in Panel A of Table 2. A

notable difference between one-year and one-month returns is that the latter are much less

12All our empirical results remain unchanged if we use only the J.P. Morgan swaption data rather than a
combination of the J.P. Morgan and Barclays Capital swaption data.

13Note that maturities τ−1 month and τ−3 months, where τ = 2, . . . , 5, do not exist so we have obtained
prices of these securities via linear interpolation of adjacent maturity prices.
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persistent than the former.

5.3 Other predictive variables

Equity variance risk premium As a proxy for a risk-neutral expectation EQ
t (RVt+τ,τ ) of

return variance, we use monthly data of the squared VIX index – the “model-free” option-

implied variance based on the highly liquid S&P 500 index options and the “model-free”

approach to compute the risk-neutral variance of a fixed 30-day maturity. The data is

obtained from the Chicago Board of Options Exchange (CBOE).14

As a proxy for physical expectation of return variance, we first compute the realized

variance RVt following the methodology described by Bollerslev, Tauchen, and Zhou (2009).

The realized variance is estimated using tick data from S&P500 futures, one of the most

heavily traded assets on the Chicago Mercantile Exchange (CME). The realized variance

RVt,τ is defined as a squared variation between day t − τ and t with τ being typically a

month, or equivalently, 22 days. To estimate the expectation of return variation of the next

period EP
t (RVt+τ,τ ), we first compute the realized variance RVt during the day t as a sum of

squared deviations of the price changes over the five-minute intervals:

RVt =
M∑
i=1

r2
t,i, (33)

where rt,i = logP (t − 1 + i
M

) − logP (t − 1 + i−1
M

) is the intra-day log return in the ith

sub-interval of day t and P (t − 1 + i
M

) is the asset price at time t − 1 + i
M

. Ideally,

the sampling frequency for the computation of the realized variance should go to infinity.

However, in practice high-frequency data is affected by a number of microstructure issues

such as price discreteness, bid-ask spreads, and nonsynchronous trading effects. A number

of studies, for example, Andersen, Bollerslev, Diebold, and Labys (2000) and Hansen and

14For the computation of the model-free measure of the implied variance see, for example, Demeterfi,
Derman, Kamal, and Zou (1999), Britten-Jones and Neuberger (2000), Carr and Madan (2001), Jiang and
Tian (2007), and Bollerslev, Gibson, and Zhou (2011).
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Lunde (2006) suggest that a five-minute sampling frequency provides a reasonable choice.

Thus, our realized variance series is based on the rt,i computed between 9:30 and 16:00 of

each trading day at the five-minute intervals. The monthly realized variance is computed by

averaging daily variances within 22 trading days over the month, RVt,mon = 1
22

∑21
j=0 RVt−j.

The weekly realized variation RVt,week is correspondingly defined by the average of the five

daily measures, RVt,week = 1
5

∑4
j=0RVt−j.

The expected variance risk premium EP
t (RVt+τ,τ ) is based on the forecasting heteroge-

neous autoregressive model of realized volatility (HAR-RV), suggested by Andersen, Boller-

slev, and Diebold (2007) and Corsi (2009). The model is simple to implement yet it produces

empirically highly accurate forecast. The model aims to capture the long memory behavior

of volatility by incorporating the daily, weekly, and monthly realized variance estimates.

HAR-RV model is a parsimonious model of higher-order regressions, where the one-month

ahead variance is an affine combination of the previous month daily, weekly, and monthly

realized variances:

RVt+22,mon = α + βDRVt + βWRVt,week + βM , RVt,mon + εt+22,mon. (34)

The variance risk premium for both equity and swaptions is computed as a difference

between the risk-neutral and physical variance expectations as defined in equation (20).

Figures 2 and 3 plot implied variance, expected variance, and resulting variance risk premium

for both equity and interest rate swaptions markets, respectively. First result from this

figures is that the variance risk premium almost everywhere positive suggesting that market

participants seek compensation for variance exposure. Second, market variance risk premium

increases during NBER recessions, represented by shaded blue bars. Such an increase in

general captures the spirit of increased uncertainty amid recessions: this is a reason that

we loosely refer to the variance risk premium a as a compensation for uncertainty.15 The

variance risk premium has also been higher in 1997-1998 period: although this period is not

15Bloom (2009) provides a similar argument about the relationship between uncertainty and volatility.
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formally marked as a recession, this was a period of high turbulence in the Asian markets

and also LTCM collapse. The sample period for swaptions is much shorter but a similar

pattern is evident on Figure 3 as well: variance risk premium increased notably during the

last financial crisis and amid European crisis in mid-late 2011.

In addition to the variance risk premium, we use two other variables in our predictive

regressions. First, we use the classical Fama and Bliss (1987) predictor, forward spread, the

spread between the forward rate of a particular maturity and a risk-free rate; Second, we use

Cochrane and Piazzesi (2005) factor, an affine combination of forward rates. Both variables

are computed using Fama-Bliss data set, downloaded from CRSP.

Panel B of Table 2 summarizes statistics for the predictive variables. It is notable that

while forward spread and CP factors are extremely persistent, the variance risk premium is

not. The first-order autocorrelation coefficients for the two factors are on the range of 0.91

and 0.97, while the same AR(1) coefficient for the variance risk premium is 0.28. Panel A

shows that 1-year excess bond returns have a similar magnitude of persistence as forward

spread and CP factors, while 1-month excess returns of Treasury bonds are less persistent.

6 Empirical Results

In this section we discuss how well the variance risk premium – endogenous proxy for eco-

nomic uncertainty in our model – predicts Treasury bond returns. We first discuss empirical

results related to equity variance risk premium and then - to swaptions-based variance risk

premium. To assess its predictability content, we run the following regressions:

rx
(τ)
t+h = β

(τ)
0 + β

(τ)
1 (h)V RPt + β

(τ)
2 (h)FS

(τ)
t + CPt + ε

(τ)
t+h, (35)

where rx
(τ)
t+h is the h−period excess return on a τ−year Treasury bond, V RPt is the variance

risk premium, FS
(τ)
t is the (τ)−maturity Fama-Bliss forward spread, and CP is the Cochrane-

Piazzesi factor. Excess returns are computed using Fama-Bliss discount bond data set. For
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each bond maturity (τ = 2, 3, 4, 5 years), and each return horizon (h = 1, 3, 12 months)

we run individual regressions as well as regressions on subset of factors and also run a

kitchen-sink-type regression using all three factors. We consider two cases of the variance

risk premium. The first one is the market variance risk premium advocated in Bollerslev,

Tauchen, and Zhou (2009), where the authors show that it has some notable predictability

for expected stock returns. The second version of the variance risk premium is new and

based on the data from the interest rate swaptions market that is relatively young.

6.1 Predictability results with equity variance risk premium

Tables 3, 4, and 5 present regression results for one-month, three-month, and one-year hold-

ing period bond excess returns, correspondingly. Table 3 reports that the VRP is significant

for one-month excess bond returns for maturities beyond 3 years in a joint regression with

a forward spread and CP factors. While statistically significant at the 10% level for 3-year

bond excess returns, VRP shows statistical significance at the 5% level in joint regressions

with forward spread and CP factors.16 Although the highest adjusted R2 is 1.44% for 5-year

excess bond returns, the overall result from this table hints that variance risk premium may

possibly have some information content relevant for short-horizon variation of bond returns

beyond that contained in standard predictors. We do not observe similar kind of significance

in Tables 4 and 5 with the exception of some marginally significant VRP for 3-month horizon

excess returns on 3-year bonds (Table 4), where we find marginal significance in the presence

of CP and forward spread factors. Thus, statistical significance of the market-based VRP

diminishes with bond maturity. Overall, the conclusion from these tables is that irrespective

of the holding period return, market variance risk premium is only marginally relevant for

predicting bond excess returns and that this relevance diminishes with bond maturity. The

reason of this result can be seen in Table 2 that shows that excess bond returns, forward

spread, and CP factors are extremely persistent but variance risk premium is not. As the

16Here in the following tables, standard errors are Newey-West corrected.
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investment horizon shortens, from one year to three months to one month, bond returns

become less persistent, and, consequently, the variance risk premium starts playing a more

important role in predicting bond excess returns. The sign of the variance risk premium

beta is always positive, consistent with our theoretical prediction, meaning that investors

seek compensation at the times of the heightened volatility. The variance risk premium is

statistically significant in the presence of either forward spread or CP factor, or both. These

results suggest that the variance risk premium captures bond return variation at shorter

horizons, while standard predictors are more important at longer horizons. These results

are broadly consistent with Mueller, Vedolin, and Zhou (2011) who also document that the

market-based variance risk premium has the strong predictive power for bond returns in the

short-run (1-month), that disappears in the long-run (1-year).

6.2 Predictability with swaptions-implied variance risk premium

Tables 6, 7, and 8 report predictability results of the variance risk premium derived from

interest rate swaptions for 1-, 3-, and 12-month Treasury excess returns. Table 6 reports the

results for 1-month excess returns. The difference of this table’s results with those in Table 3

is quite stark. First observation is that swaptions-based variance risk premium (SVRP) is

strongly significant in the univariate regressions at the 1% level of statistical significance and

adjusted R2 varies from 29 percent to 21 percent and declines with the maturity (column

1 of Table 6). Second observation is that it is significant in the presence of Fama-Bliss

factor (column 4) and Cochrane-Piazzessi factor (column 5), and still highly significant in

the multi-variate regression with both factors (column 6). Third observation is that the

SVRP in the predictive regressions seems to add nontrivial forecasting power: for example,

when it is added to a CP factor, the adjusted R2 increases from 28 percent to 41 percent

for 2-year returns; when it is added to a Fama-Bliss factor, the adjusted R2 increases from

54 to 68 percent. An increase in R2 is similar albeit slightly lower (especially in the case

of a Fama-Bliss factor) as the bond maturity increases. The take-away from Table 6 is
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that derivatives-based variance risk premium seems to have information useful for predicting

expected bond returns beyond that contained in the standard predictors. We contrast this

result with market-based variance risk premium, which does not provide such evidence (see

Table 3).

Turning to the predictability results of the 3-month holding period Treasury excess re-

turns, reported in Table 7, we first observe that the SVRP is still statistically significant at

the 1% level for short-maturity (e.g. 2-year) bonds, however, this statistical significance de-

creases to 5% significance and then to marginal or no significance as bond maturity increases.

Second, SVRP still has some non-trivial contribution to the predictability of excess returns.

For example, in the multivariate regressions with a CP factor, adjusted R2 increases by 6

percent – from 27 to 33 percent – but that contribution falls as bond’s maturity increases.

Third, in all but 2-year maturity bond, the statistical significance of the SVRP is marginal

or non-existent in the presence of other predictors. Comparing results from Tables 6 and

7 it seems that swaptions-based variance risk premium captures the short-run risks in the

Treasury excess returns. Indeed, SVRP seems to be capturing variation in the short-horizon

expected returns, where significance of such contribution is declining with bond’s maturity.

This predictability survives in the presence of other predictors, which remain important at

longer horizons. Table 8 just confirms this pattern: 1-year returns are much less predictable

by the SVRP then 1-month or 3-month returns.

7 Concluding remarks

We study bond pricing implications in the context of our proposed long-run risk asset-

pricing model with uncertainty risks and inflation. We show that our model is promising in

explaining the first and second moments of the bond market. First, we show that the long-run

risk factor is crucial in fitting the level of the interest rates. Second, we study the variation in

bond short-horizon and long-horizon returns, predictability patterns that were documented
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separately in earlier literature. Our empirical results indicate that swaptions-based variance

risk premium drives short-horizon (one- and three-month) Treasury bond returns, while other

popular predictive variables, such as Fama-Bliss forward spread or Cochrane-Piazzessi factor

drive the variation in the long-horizon (one-year) Treasury bond returns. In the model time-

varying bond risk premium is driven by the variance of the endowment growth process and

the volatility-of-volatility (uncertainty) of endowment process. Since variance risk premium

in the model loads entirely on the vol-of-vol factor, we interpret short-horizon variation of the

bond returns as due to the vol-of-vol factor, whereas long-horizon variation – to the variance

of the endowment growth factor. Thus, our model allows to reconcile separate empirical

findings about bond returns.
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A Appendix

A.1 Solution for the consumption-wealth ratio coefficients

We solve for A0, Ax, Aσ2 , Aq - state variables’ loadings in the price-consumption ratio zt.

We solve for A’s by pricing rc,t+1 using Euler equation (10), wealth return equation (7) and

assumed z dynamics in equation (6). Thus, Euler equation becomes:

Et [exp(mt+1 + rc,t+1)] = Et
[
exp

(
θ ln δ − θ

ψ
gt+1 + θrc,t+1

)]
= 1. (36)

Using Jensen’s inequality, obtain:

Et
[
θ ln δ − θ

ψ
gt+1 + θrc,t+1

]
+

1

2
Vart

[
θ ln δ − θ

ψ
gt+1 + θrc,t+1

]
= 0. (37)

Substituting out rc,t+1, zt+1, and zt, obtain:

Et[θ ln δ − θ

ψ
(µg + xt + σg,tzg,t+1) + θ(κ0 + κ1(A0 + Axxt+1 + Aσσ

2
g,t+1 + Aqqt+1)−

A0 − Axxt − Aσσ2
g,t − Aqqt + µg + xt + σg,tzg,t+1)]+

1

2
Vart[θ ln δ − θ

ψ
(µg + xt + σg,tzg,t+1) + θ(κ0 + κ1(A0 + Axxt+1 + Aσσ

2
g,t+1 + Aqqt+1)−

A0 − Axxt − Aσσ2
g,t − Aqqt + µg + xt + σg,tzg,t+1)] = 0.

(38)

To solve for Ax, match terms in front of xt:

− θ
ψ

+ θ(κ1Axρx − Ax + 1) = 0 ⇒ Ax =
1− 1

ψ

1− κ1ρx
. (39)
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To solve for Aσ, match terms in front of σ2
g,t:

(θκ1Aσρσ − θAσ)σ2
g,t +

1

2
Vart

[
− θ
ψ
σ2
g,tzg,t+1 + θκ1Axφeσg,tzx,t+1 + θσg,tzg,t+1

]
=

θAσ(κ1ρσ − 1)σ2
g,t +

1

2
Vart

[(
θ − θ

ψ

)
σg,tzg,t+1 + θκ1Axφeσg,tzx,t+1

]
= 0 ⇒

θAσ(κ1ρσ − 1) +
1

2

[(
θ − θ

ψ

)2

+ (θκ1Axφe)
2

]
= 0 ⇒

Aσ =
1

2θ(1− κ1ρσ)

[(
θ − θ

ψ

)2

+ (θκ1Axφe)
2

]
.

(40)

To solve for A0, set constant terms under the expectation in (38) equal to zero:

θ ln δ + θ(κ0 + κ1(A0 + Aσaσ + Aqaq))− A0 +

(
θ − θ

ψ

)
µg = 0 ⇒

A0 =
1

1− κ1

[
ln δ + κ0 + κ1(Aσaσ + Aqaq) +

(
1− 1

ψ

)
µg

]
.

(41)

To solve for Aq, match terms in front of qt and set equal to zero:

(θκ1Aqρq − θAq)qt +
1

2
Vart[θκ1Aσ

√
qtzσt+1 + θκ1Aq(ρqqt + φq

√
qtzqt+1)− θAqqt] =

θAq(κ1ρq − 1)qt +
1

2
Var(θκ1Aσ

√
qtzσt+1 + θκ1Aqφq

√
qtzqt+1) = 0 =⇒

1

2
(θκ1φq)

2A2
q + θ(κ1ρq − 1)Aq +

1

2
(θκ1Aσ)2 = 0 or, equivalently,

(θκ1φq)
2A2

q + 2θ(κ1ρq − 1)Aq + (θκ1Aσ)2 = 0.

(42)

The solution for Aq represents the solution to a quadratic equation and is given by:

A±q =
1− κ1ρq ±

√
(1− κ1ρq)2 − (θκ2

1φqAσ)2

θ(κ1φq)2
. (43)

As Tauchen (2011) notes, a “positive” root A+
q has an unfortunate property that

lim
φq→0

φ2
qA

+
q 6= 0, (44)
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which is, essentially, a violation of the transversality condition in this setting: though un-

certainty qt vanishes with φq → 0, the effect of it on prices is not. Therefore, we choose A−q

root as a viable solution for Aq:

Aq =
1− κ1ρq −

√
(1− κ1ρq)2 − θ2κ4

1φ
2
qA

2
σ

θ(κ1φq)2
. (45)

To insure that determinant in (45) is positive, we also need to impose a constraint on the

magnitude of the shock zq,t+1:

φ2
q ≤

(1− κ1ρq)
2

θ2κ4
1A

2
σ

. (46)

A.2 Solution for the pricing kernel

Using the solutions for A′s obtained in A.1, we solve for the expected value Et(mt+1) and

variance Vart(mt+1) of the pricing kernel:

Et[mt+1] = θ ln δ − θ

ψ
Et[gt+1] + (θ − 1)Et[rc,t+1] =

= θ ln δ − θ

ψ
(µg + xt) + (θ − 1)Et(κ0 + κ1zt+1 + gt − zt)

= θ ln δ − θ

ψ
(µg + xt) + (θ − 1)[κ0 + κ1(A0 + Axρxxt + Aσ(aσ + ρσσ

2
g,t) + Aq(aq + ρqqt))

+ µg + xt − A0 − Axxt − Aσσ2
g,t − Aqqt]

= θ ln δ +

(
(θ − 1)− θ

ψ

)
︸ ︷︷ ︸

−γ

µg + (θ − 1)[κ0 + (κ1 − 1)A0 + κ1(Aσaσ + Aqaq)]

− θ

ψ
xt + (θ − 1)[(Ax(κ1ρx − 1) + 1)xt + Aσ(κ1ρσ − 1)σ2

g,t + Aq(κ1ρq − 1)qt]

= θ ln δ − γ(µg + xt) + (θ − 1)[κ0 + (κ1 − 1)A0 + κ1(Aσaσ + Aqaq)]

+ (θ − 1)[Ax(κ1ρx − 1)xt + Aσ(κ1ρσ − 1)σ2
g,t + Aq(κ1ρq − 1)qt].

(47)
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The variance of the SDF Vart[mt+1] is given by

Vart[mt+1] = Vart

[
θ ln δ − θ

ψ
gt+1 + (θ − 1)rc,t+1

]
= Vart

[
− θ
ψ
gt+1 + (θ − 1)κ1(A0 + Axxt+1 + Aσσ

2
t+1 + Aqqt+1)

]
= Vart

[
− θ
ψ
σg,tzg,t+1 + (θ − 1)[κ1(Axφeσg,tzx,t+1 + Aσ

√
qtzσ,t+1 + Aqφq

√
qtzq,t+1) + σg,tzg,t+1]

]
= Vart

[(
(θ − 1)− θ

ψ

)
σg,tzg,t+1 + (θ − 1)κ1(Axφeσg,tzx,t+1 + Aσ

√
qtzσ,t+1 + Aqφq

√
qtzq,t+1)

]
= γ2σ2

g,t + (θ − 1)2κ2
1

[
A2
xφ

2
eσ

2
g,t + (A2

σ + A2
qφ

2
q)qt
]
.

(48)

A.3 Solution for the n−period real bond price

In this section we derive the (log) price of an n−period bond in closed form. A general

recursion for solving for the n−period bond prices is as follows:

P n
t = Et

[
Mt+1P

n−1
t+1

]
. (49)

Then the n−period log bond price

pnt = Et[mt+1] +
1

2
Vart[mt+1] + Et[pn−1

t+1 ] +
1

2
Vart[p

n−1
t+1 ] + Covt[mt+1, p

n−1
t+1 ]. (50)

Assuming that pnt follows the affine representation of the state variables:

pn−1
t+1 = Bn−1

0 +Bn−1
1 xt+1 +Bn−1

2 σ2
t+1 +Bn−1

3 qt+1. (51)

The first two terms in (50) are given in (47) and (48). The last three terms in (50) are
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computed using a pricing conjecture (51). Thus, the expectation term for the bond price is:

Et
[
pn−1
t+1

]
=Bn−1

0 +Bn−1
1 Et[xt+1] +Bn−1

2 Et[σ2
t+1] +Bn−1

3 Et[qt+1]

= Bn−1
0 +Bn−1

1 ρxxt +Bn−1
2 (aσ + ρσσ

2
t ) +Bn−1

3 (aq + ρqqt)

= (Bn−1
0 +Bn−1

2 aσ +Bn−1
3 aq) +Bn−1

1 ρxxt +B2
n−1ρσσ

2
t +Bn−1

3 ρqqt,

(52)

and the variance term is:

Vart
[
pn−1
t+1

]
= Et

[
pn−1
t+1 − Et

[
pn−1
t+1

]]2
=
(
Bn−1

1 φe
)2
σ2
g,t +

((
Bn−1

2

)2
+
(
Bn−1

3 φq
)2
)
qt. (53)

Last, express the covariance term as a function of the state variables:

Covt
[
pn−1
t+1 ,mt+1

]
= Et

[(
pn−1
t+1 − Et

[
pn−1
t+1

])
× (mt+1 − Et [mt+1])

]
= Et

[(
Bn−1

1 φeσg,tzx,t+1 +Bn−1
2

√
qtzσ,t+1 +Bn−1

3 φq
√
qtzq,t+1

)
× ((1− γ)σg,tzg,t+1 + (θ − 1)κ1(Axφeσg,tzx,t+1 + Aσ

√
qtzσ,t+1 + Aqφq

√
qtzq,t+1))]

= (θ − 1)κ1

[
AxB

n−1
1 φ2

eσ
2
g,t + AσB

n−1
2 qt + AqB

n−1
3 φ2

qqt
]
.

(54)

Write down pnt as a sum of (47), (48), (52), (53), and (54) and collect together constant

terms and loadings for state variables xt, σ
2
t , and qt. This implies for coefficients:

Bn
0 = c0 +Bn−1

0 +Bn−1
2 aσ +Bn−1

3 aq

Bn
1 = c1 +Bn−1

1 ρx

Bn
2 = c2 −

1

2
(θ − 1)2κ2

1A
2
xφ

2
e +Bn−1

2 ρσ +
1

2
φ2
e

[
(θ − 1)κ1Ax +Bn−1

1

]2
Bn

3 = c3 +Bn−1
3 ρq +

1

2

[(
Bn−1

2

)2
+
(
Bn−1

3 φq
)2
]

+ (θ − 1)κ1

(
AσB

n−1
2 + AqB

n−1
3 φ2

q

)
,

(55)
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where ci, i = 0, . . . , 3 are given by:

c0 = θ ln δ − γµg + (θ − 1)[κ0 + (κ1 − 1)A0 + κ1(Aσaσ + Aqaq)];

c1 = −γ + (θ − 1)Ax(κ1ρx − 1);

c2 =
1

2
γ2 +

1

2
(θ − 1)2κ2

1A
2
xφ

2
e + (θ − 1)Aσ(κ1ρσ − 1);

c3 =
1

2
(θ − 1)2κ2

1(A2
σ + A2

qφ
2
q) + (θ − 1)Aq(κ1ρq − 1).

(56)

Note that ci, i = 0, . . . , 3, coefficients are the steady-state loadings for the real risk-free rate:

rf = −[c0 c1 c2 c3]× [1 Ex Eσ2 Eq]′, (57)

A.4 Solution for the nominal risk-free rate

Here we provide a derivation for the nominal risk-free rate, the (negative) of the (log) price

of the one period nominal bond. We express the nominal risk-free rate in log terms, similar

to the real risk free rate given in equation (13):

r$
f,t = −Et

[
m$
t+1

]
− 1

2
Vart

[
m$
t+1

]
= −Et [mt+1 − πt+1]− 1

2
Vart [mt+1]− 1

2
Vart [πt+1] + Covt[mt+1, πt+1]

= rf,t + Et[πt+1]− 1

2
Vart[πt+1] + Covt[mt+1, πt+1]

= rf,t + aπ + ρππt −
1

2
[φ2
π + φ2

πgσ
2
g,t + φ2

πσqt] + Covt[mt+1, πt+1].

(58)

we need to compute the last term in (58) to complete the expression for the nominal risk-free

rate in closed form:

Covt[mt+1, πt+1] = Et[[mt+1 − Et[mt+1]]× [πt+1 − Et[πt+1]]]. (59)
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The deviations of pricing kernel mt+1 and inflation πt+1 are given by:

mt+1 − Et[mt+1] = −γσg,tzg,t+1 + (θ − 1)κ1(Axφezx,t+1 + Aσ
√
qtzσ,t+1 + Aqφq

√
qtzq,t+1)

πt+1 − Et[πt+1] = φπzπ,t+1 + φπgσg,tzg,t+1 + φπσ
√
qtzσ,t+1,

(60)

which implies for (59):

Et[[mt+1 − Et[mt+1]]× [πt+1 − Et[πt+1]]] = −γφπgσ2
g,t + (θ − 1)κ1Aσφπσqt. (61)

Combining together (14), (58), and (61), obtain the closed-form expression for the nominal

risk-free rate:

r$
f,t = −θ ln δ + γµg + aπ − (θ − 1)[κ0 + (κ1 − 1)A0 + κ1(Aσaσ + Aqaq)]−

1

2
φ2
π

+ [γ − (θ − 1)Ax(κ1ρx − 1)]xt

+

[
−(θ − 1)Aσ(κ1ρσ − 1)− 1

2
γ2 − 1

2
(θ − 1)2(κ1Axφe)

2 − 1

2
φ2
πg − γφπg

]
σ2
g,t

+

[
−(θ − 1)Aq(κ1ρq − 1)− 1

2
(θ − 1)2κ2

1(A2
σ + A2

qφ
2
q)−

1

2
φ2
πσ + (θ − 1)κ1Aσφπσ

]
qt

+ ρππt.

(62)

Similarly to the real risk-free rate, the steady-state nominal risk-free rate can be written as

follows:

r$
f = −[c$

0 c
$
1 c

$
2 c

$
3 c

$
4]× [1 Ex Eσ2 Eπ]′, (63)
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where the c$
i , i = 0, . . . , 4 loadings:

c$
0 = c0 − aπ +

1

2
φ2
π;

c$
1 = c1;

c$
2 = c2 +

1

2
φ2
πg + γφπg;

c$
3 = c3 +

1

2
φ2
πσ − (θ − 1)κ1Aσφπσ;

c$
4 = ρπ.

(64)

A.5 Solution for the n−period nominal bond price

The n−period nominal log bond price p$,n
t is given by:

p$,n
t = Et[m$

t+1] +
1

2
Vart[m

$
t+1] + Et[p$,n−1

t+1 ] +
1

2
Vart[p

$,n−1
t+1 ] + Covt[m

$
t+1, p

$,n−1
t+1 ]. (65)

Assume that p$,n
t follows the same affine function representation, as in the case of real bonds,

with the additional state variable for inflation:

p$,n
t = B$,n

0 +B$,n
1 xt +B$,n

2 σ2
t +B$,n

3 qt +B$,n
4 πt, (66)

We know the first and the second terms in (65) from nominal risk-free rate calculations.

Compute the last three terms using a pricing conjecture (66):

Et
[
p$,n−1
t+1

]
= B$,n−1

0 +B$,n−1
1 ρxxt +B$,n−1

2 (aσ + ρσσ
2
g,t) +B$,n−1

3 (aq + ρqqt) +B$,n−1
4 (aπ + ρππt)

=
[
B$,n−1

0 +B$,n−1
2 aσ +B$,n−1

3 aq +B$,n−1
4 aπ

]
+B$,n−1

1 ρxxt +B$,n−1
2 ρσσ

2
g,t +B$,n−1

3 ρqqt +B$,n−1
4 ρππt.

(67)
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The shock to the nominal bond price is given by:

p$,n−1
t+1 − Et

[
p$,n−1
t+1

]
= B$,n−1

1 φeσg,tzx,t+1 +B$,n−1
2

√
qtzσ,t+1 +B$,n−1

3 φq
√
qtzq,t+1

+B$,n−1
4 [φπzπ,t+1 + φπgσg,tzg,t+1 + φπσ

√
qtzσ,t+1].

(68)

Thus, the variance of the nominal bond price - the fourth term in (65) - is given by:

Var[p$,n−1
t+1 ] = Et

[
p$,n−1
t+1 − Et

[
p$,n−1
t+1

]]2

=
[
(B$,n−1

1 φe)
2 + (B$,n−1

4 φπg)
2
]
σ2
g,t

+

[(
B$,n−1

2 +B$,n−1
4 φπσ

)2

+
(
B$,n−1

3 φq

)2
]
qt +

(
B$,n−1

4 φπ

)2

.
(69)

Lastly, compute covariance between between nominal pricing kernel m$
t+1 and the nominal

bond price p$,n−1
t+1 :

Covt

[
m$
t+1, p

$,n−1
t+1

]
= Et

[[
m$
t+1 − Et

[
m$
t+1

]]
×
[
p$,n−1
t+1 − Et

[
p$,n−1
t+1

]]]
, (70)

where the shock to the nominal pricing kernel in terms of state variables is:

m$
t+1 − Et

[
m$
t+1

]
= mt+1 − Etmt+1 − (πt+1 − Etπt+1)

= −γσg,tzg,t+1 + (θ − 1)κ1 (Axφeσg,tzx,t+1 + Aσ
√
qtzσ,t+1 + Aqφq

√
qtzq,t+1)

− φπzπ,t+1 − φπgσg,tzg,t+1 − φπσ
√
qtzσ,t+1,

(71)

and the shock to the nominal bond price, p$,n−1
t+1 −Et

[
p$,n−1
t+1

]
, is given in (68). Thus, a final

expression for a covariance term in (65) is:

Covt

[
m$
t+1, p

$,n−1
t+1

]
=
[
(θ − 1)κ1AxB

$,n−1
1 φ2

e − (γ + φπg)B
$,n−1
4 φπg

]
σg,t

+
[
((θ − 1)κ1Aσ − φπσ)(B$,n−1

2 +B$,n−1
4 φπσ) + (θ − 1)κ1AqB

$,n−1
3 φ2

qqt

]
qt

−B$,n−1
4 φ2

π.

(72)

Combining together (58), (67), (69), and (72), obtain the solution for the nominal n−period
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bond price:

B$,n
0 = c0 − aπ +

[
B$,n−1

0 +B$,n−1
2 aσ +B$,n−1

3 aq +B$,n−1
4 aπ

]
+

1

2
φ2
π

(
B$,n−1

4 − 1
)2

B$,n
1 = c1 +B$,n−1

1 ρx

B$,n
2 = B$,n−1

2 ρσ + (θ − 1)Aσ(κ1ρσ − 1) +
1

2
(γ + φπg)

2 +
1

2
φ2
e

[
(θ − 1)κ1Ax +B$,n−1

1

]2

+
1

2
(B$,n−1

4 φπg)
2 − (γ + φπg)B

$,n−1
4 φπg

B$,n
3 = B$,n−1

3 ρq + (θ − 1)Aq(κ1ρq − 1) +
1

2

[
(θ − 1)κ1Aσ +B$,n−1

2 + φφσ
(
B$,n−1 − 1

)]2

+
1

2

[
(θ − 1)κ1Aq +B$,n−1

3

]2

φ2
q

B$,n
4 = φπ

(
B$,n−1 − 1

)
.

(73)
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Table 1: Model Calibration

This table presents the calibrated parameters used in previous studies and in our paper. The
column “BY” refers to the choice of parameters in Bansal and Yaron (2004), the column
“BTZ” – to that in Bollerslev, Tauchen, and Zhou (2009), and the column “Our choice”
refers to our choice of calibration parameters.

Type Parameters BY BTZ Our choice

Panel A: Real Economy
δ 0.997 0.997 0.997

Preferences γ 10 10 8
ψ 1.5 1.5 1.5

µg 0.0015 0.0015 0.0015
ρx 0.979 0 0.979

Endowment φe 0.044 0 0.044
aσ 0.134× 10−5 0.134× 10−5 0.134× 10−5

ρσ 0.978 0.978 0.978

aq n/a 2× 10−7 2× 10−7

Uncertainty ρq n/a 0.8 0.8
φq n/a 0.001 0.001

Panel B: Inflation dynamics
Constant aπ n/a n/a 8× 10−5

Persistence ρπ n/a n/a 0.95
Autonomous φπ n/a n/a 0.0013
Consumption φπg n/a n/a -0.0385
Uncertainty φπσ n/a n/a 28.50

Panel C: Campbell-Shiller constants
κ0 0.3251 0.3251 0.3251
κ1 0.9 0.9 0.9
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Table 2: Summary Statistics

This table presents summary statistics for the data used in the study. Panel A presents a summary
statistics for the Treasury 1-year and 1-month excess bond returns for maturities 2 to 5 years;
Panel B reports the macro-variables and variance risk premium-related series statistics. In Panel
B FSj , j = 1, . . . , 4 refers to the Fama-Bliss j-year forward spreads, CP is the Cochrane-Piazzesi
factor, IVAR is the squared implied volatility of S&P500 index, EVAR is the projected value of
the realized market variance based on the HAR-RV model outlined in equation (34), VRP is the
variance risk premium. Sample period is January 1990 to December 2012, frequency is monthly.
Excess bond returns, forward spreads, and Cochrane-Piazzesi factor are computed using Fama-Bliss
Treasury Bond data set from CRSP.

Panel A: Summary Statistics of Treasury Bond Returns

1-year excess returns 1-month excess returns
2yr 3yr 4yr 5yr 2yr 3yr 4yr 5yr

Mean 0.92 1.78 2.56 3.06 1.09 1.62 2.07 2.27
Max 3.64 7.31 10.29 12.54 4.63 5.15 5.95 9.15
Min -2.37 -5.24 -6.88 -8.37 -1.06 -1.37 -1.67 -2.92
Std. Dev. 1.33 2.53 3.53 4.38 0.88 1.21 1.58 1.92
Skewness -0.08 -0.25 -0.35 -0.46 0.33 0.27 0.24 0.30
Kurtosis 2.23 2.51 2.60 2.72 3.45 2.73 2.43 2.77
AR(1) coeff 0.95 0.94 0.93 0.92 0.78 0.70 0.63 0.58

Panel B: Summary Statistics for Macro Factors and Variance Risk Premium

FS2 FS3 FS4 FS5 CP IV AR EV AR V RP
Mean 0.56 1.06 1.48 1.65 2.08 39.79 21.32 18.47
Max 2.04 3.25 3.84 4.32 4.66 298.90 282.60 206.97
Min -0.77 -0.61 -0.60 -0.82 -0.40 9.05 3.92 -40.85
Std. Dev. 0.59 0.90 1.18 1.39 1.09 35.61 25.13 21.90
Skewness 0.13 0.30 0.19 0.14 0.46 3.32 5.57 3.74
Kurtosis 2.71 2.20 1.87 1.72 2.82 19.00 49.48 26.79
AR(1) coeff 0.92 0.96 0.96 0.97 0.91 0.80 0.75 0.28
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Table 3: Bond Return Predictability with Equity VRP: 1-month Holding Period

This table presents regression results for the following regression: rx
(τ)
t+h = β

(τ)
0 + β

(τ)
1 (h)V RPt +∑2

j=1 β
(τ)
j (h)Ft,j + ε

(τ)
t+h, where rx

(τ)
t+h are excess returns on Treasury bonds, h = 1 month and

τ = 2, . . . , 5 years. V RPt is the expected market variance risk premium, Ft,j , j = 1, 2 is the
Cochrane-Piazzesi and the forward spread factors. t-statistics in parentheses are calculated using
Newey and West (1987) standard errors. Adjusted R2 are given in percentage points. The sample
spans the period from January 1990 to December 2012, frequency of the data is monthly. Treasury
excess returns are computed using Fama-Bliss data set.

2yr 3yr

Const 0.011 0.004 0.000 0.004 0.016 0.004 -0.001 -0.001
( 9.26) ( 6.28) ( 0.26) ( 3.29) ( 9.90) ( 4.67) ( -0.93) ( -0.57)

VRP -0.232 0.185 -0.155 0.173 0.242 0.279 0.356 0.352
( -0.86) ( 0.87) ( -0.90) ( 0.92) ( 0.67) ( 1.15) ( 1.73) ( 1.71)

FS 1.225 1.180 1.083 0.076
( 21.23) ( 5.85) ( 20.32) ( 0.45)

CP 0.623 0.026 0.926 0.865
( 16.73) ( 0.24) ( 24.33) ( 6.38)

Adj. R2 -0.03 67.81 60.00 67.71 -0.17 65.41 69.49 69.40

4yr 5yr

Const 0.020 0.004 -0.001 0.000 0.021 0.004 -0.003 -0.000
( 9.86) ( 3.71) ( -0.75) ( 0.16) ( 8.81) ( 2.68) ( -1.47) ( -0.27)

VRP 0.494 0.480 0.637 0.589 1.175 0.862 1.336 1.089
( 0.97) ( 1.46) ( 2.31) ( 2.10) ( 1.47) ( 1.67) ( 2.47) ( 2.20)

FS 1.037 0.344 1.016 0.552
( 19.10) ( 2.28) ( 17.43) ( 4.59)

CP 1.161 0.812 1.300 0.679
( 21.49) ( 4.91) ( 16.92) ( 4.57)

Adj. R2 0.11 60.94 64.35 65.15 1.44 55.90 55.59 59.22
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Table 4: Bond Return Predictability with Equity VRP: 3-month Holding Period

This table presents regression results for the following regression: rx
(τ)
t+h = β

(τ)
0 + β

(τ)
1 (h)V RPt +∑2

j=1 β
(τ)
j (h)Ft,j + ε

(τ)
t+h, where rx

(τ)
t+h are excess returns on Treasury bonds, h = 3 months and

τ = 2, . . . , 5 years. V RPt is the expected market variance risk premium, Ft,j , j = 1, 2 is the
Cochrane-Piazzesi and the forward spread factors. t-statistics in parentheses are calculated using
Newey and West (1987) standard errors. Adjusted R2 are given in percentage points. The sample
spans the period from January 1990 to December 2012, frequency of the data is monthly. Treasury
excess returns are computed using Fama-Bliss data set.

2yr 3yr

Const 0.009 0.002 -0.000 0.001 0.015 0.003 -0.001 -0.001
( 8.18) ( 2.94) ( -0.37) ( 1.21) ( 7.79) ( 1.67) ( -0.52) ( -0.80)

VRP 0.071 0.455 0.055 0.315 0.457 0.501 0.432 0.421
( 0.25) ( 2.21) ( 0.34) ( 1.74) ( 1.05) ( 1.66) ( 1.68) ( 1.62)

FS 1.115 0.728 1.094 -0.179
( 12.24) ( 4.19) ( 9.12) ( -0.43)

CP 0.572 0.225 0.910 1.052
( 12.71) ( 2.84) ( 10.05) ( 3.31)

Adj. R2 -0.34 58.76 55.81 60.16 0.08 42.89 45.58 45.43

4yr 5yr

Const 0.019 0.004 -0.001 -0.000 0.021 0.004 -0.002 -0.001
( 7.44) ( 1.45) ( -0.30) ( -0.16) ( 6.55) ( 1.34) ( -0.56) ( -0.29)

VRP 0.685 0.678 0.653 0.657 1.209 0.896 1.173 1.054
( 1.07) ( 1.51) ( 1.53) ( 1.55) ( 1.17) ( 1.20) ( 1.49) ( 1.42)

FS 1.052 0.187 1.032 0.432
( 8.15) ( 0.66) ( 7.50) ( 1.83)

CP 1.176 0.992 1.339 0.875
( 8.56) ( 3.10) ( 7.55) ( 2.82)

Adj. R2 0.13 34.47 38.23 38.16 0.61 29.23 31.40 32.50
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Table 5: Bond Return Predictability with Equity VRP: 1-year Holding Period

This table presents regression results for the following regression: rx
(τ)
t+h = β

(τ)
0 + β

(τ)
1 (h)V RPt +∑2

j=1 β
(τ)
j (h)Ft,j + ε

(τ)
t+h, where rx

(τ)
t+h are excess returns on Treasury bonds, h = 1 year and τ =

2, . . . , 5 years. V RPt is the expected market variance risk premium, Ft,j , j = 1, 2 is the Cochrane-
Piazzesi and the forward spread factors. t-statistics in parentheses are calculated using Newey and
West (1987) standard errors. Adjusted R2 are given in percentage points. The sample spans the
period from January 1990 to December 2012, frequency of the data is monthly. Treasury returns
are computed using Fama-Bliss data set.

2yr 3yr

Const 0.009 0.007 -0.002 -0.002 0.016 0.011 -0.002 -0.001
( 4.56) ( 2.66) ( -0.70) ( -0.64) ( 4.60) ( 2.31) ( -0.34) ( -0.28)

VRP 0.342 0.444 0.291 0.185 0.848 0.878 0.761 0.740
( 0.86) ( 1.20) ( 0.75) ( 0.46) ( 1.10) ( 1.19) ( 1.00) ( 0.97)

FS 0.278 -0.272 0.439 -0.180
( 0.96) ( -0.81) ( 1.31) ( -0.46)

CP 0.510 0.586 0.873 0.954
( 5.01) ( 4.82) ( 4.69) ( 4.38)

Adj. R2 -0.05 1.11 17.09 17.87 0.18 2.32 14.10 14.07

4yr 5yr

Const 0.024 0.014 -0.002 -0.002 0.028 0.017 -0.000 -0.002
( 4.77) ( 2.09) ( -0.26) ( -0.27) ( 4.65) ( 2.27) ( -0.04) ( -0.23)

VRP 1.100 1.112 0.977 0.980 1.365 1.166 1.228 1.151
( 0.98) ( 1.07) ( 0.91) ( 0.93) ( 0.93) ( 0.85) ( 0.91) ( 0.86)

FS 0.627 0.041 0.671 0.311
( 1.86) ( 0.11) ( 2.00) ( 0.94)

CP 1.228 1.204 1.375 1.219
( 4.77) ( 4.31) ( 4.29) ( 4.10)

Adj. R2 0.10 4.31 14.21 13.90 0.10 4.50 11.54 12.08
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Table 6: Bond Return Predictability with Swaptions VRP: 1-month Holding
Period

This table presents regression results for the following regression: rx
(τ)
t+h = β

(τ)
0 + β

(τ)
1 (h)V RPt +∑2

j=1 β
(τ)
j (h)Ft,j + ε

(τ)
t+h, where rx

(τ)
t+h are excess returns on Treasury bonds, h = 1 month and τ = 2, . . . , 5

years. V RPt is the expected variance risk premium derived from swaptions market, Ft,j , j = 1, 2 is the
Cochrane-Piazzesi and the forward spread factors. t-statistics in parentheses are calculated using Newey
and West (1987) standard errors. Adjusted R2 are given in percentage points. The sample is from February
2005 to December 2012, monthly frequency. Treasury returns are computed using Fama-Bliss data set.

Panel A: maturity = 2 years
Const -0.023 -0.019 -0.028 -0.026 -0.031 -0.031

(-4.01) (-6.18) (-3.66) (-8.53) (-4.44) (-9.09)

VRP 0.005 NaN NaN 0.003 0.004 0.003
(3.00) ( NaN) ( NaN) (3.98) (2.52) (3.10)

FS NaN 2.762 NaN 2.405 NaN 2.212
( NaN) (6.10) ( NaN) (7.18) ( NaN) (7.15)

CP NaN NaN 0.670 NaN 0.480 0.311
( NaN) ( NaN) (3.14) ( NaN) (2.61) (2.87)

Adj. R2 28.86 53.88 27.73 67.71 40.82 72.51

Panel B: maturity = 3 years
Const -0.022 -0.025 -0.027 -0.030 -0.031 -0.034

(-3.70) (-6.38) (-3.61) (-8.67) (-4.31) (-9.31)

VRP 0.005 NaN NaN 0.003 0.003 0.003
(2.91) ( NaN) ( NaN) (2.86) (2.39) (2.38)

FS NaN 1.762 NaN 1.547 NaN 1.412
( NaN) (6.51) ( NaN) (7.65) ( NaN) (7.71)

CP NaN NaN 0.690 NaN 0.507 0.267
( NaN) ( NaN) (3.25) ( NaN) (2.76) (2.67)

Adj. R2 25.38 55.69 26.72 65.46 37.52 68.37

Panel C: maturity = 4 years
Const -0.021 -0.028 -0.027 -0.034 -0.030 -0.038

(-3.36) (-6.73) (-3.52) (-10.54) (-4.12) (-11.95)

VRP 0.005 NaN NaN 0.003 0.003 0.003
(2.68) ( NaN) ( NaN) (4.37) (2.15) (3.33)

FS NaN 1.309 NaN 1.184 NaN 1.093
( NaN) (6.85) ( NaN) (8.13) ( NaN) (8.03)

CP NaN NaN 0.705 NaN 0.526 0.270
( NaN) ( NaN) (3.30) ( NaN) (2.82) (2.77)

Adj. R2 21.04 51.53 23.42 61.87 31.94 64.30

Panel D: maturity = 5 years
(-3.33) (-8.31) (-3.46) (-9.90) (-4.13) (-10.36)

VRP 0.005 NaN NaN 0.002 0.004 0.002
(3.04) ( NaN) ( NaN) (1.74) (2.51) (1.44)

FS NaN 1.168 NaN 1.051 NaN 0.977
( NaN) (8.06) ( NaN) (7.32) ( NaN) (6.98)

CP NaN NaN 0.738 NaN 0.542 0.232
( NaN) ( NaN) (3.38) ( NaN) (2.81) (2.04)

Adj. R2 20.58 57.09 21.66 59.46 30.29 60.7246



Table 7: Bond Return Predictability with Swaptions VRP: 3-month Holding
Period

This table presents regression results for the following regression: rx
(τ)
t+h = β

(τ)
0 + β

(τ)
1 (h)V RPt +∑2

j=1 β
(τ)
j (h)Ft,j + ε

(τ)
t+h, where rx

(τ)
t+h are excess returns on Treasury bonds, h = 3 months and τ = 2, . . . , 5

years. V RPt is the expected variance risk premium derived from swaptions market, Ft,j , j = 1, 2 is the
Cochrane-Piazzesi and the forward spread factors. t-statistics in parentheses are calculated using Newey and
West (1987) standard errors. Adjusted R2 are given in percentage points. The sample is from February 2005
to December 2012, monthly frequency. Treasury excess returns are computed using Fama-Bliss data set.

Panel A: maturity = 2 years
Const -0.015 -0.013 -0.022 -0.018 -0.024 -0.023

(-2.95) (-4.48) (-3.11) (-5.41) (-3.54) (-6.64)

VRP 0.004 NaN NaN 0.002 0.002 0.002
(2.54) ( NaN) ( NaN) (3.34) (1.99) (2.43)

FS NaN 2.353 NaN 2.113 NaN 1.925
( NaN) (5.40) ( NaN) (5.93) ( NaN) (6.08)

CP NaN NaN 0.590 NaN 0.463 0.318
( NaN) ( NaN) (2.92) ( NaN) (2.57) (3.10)

Adj. R2 19.16 49.98 26.81 57.39 32.91 63.59

Panel B: maturity = 3 years
Const -0.012 -0.018 -0.019 -0.020 -0.021 -0.024

(-1.95) (-4.20) (-2.50) (-4.48) (-2.74) (-5.49)

VRP 0.003 NaN NaN 0.001 0.002 0.001
(2.16) ( NaN) ( NaN) (1.82) (1.52) (1.14)

FS NaN 1.633 NaN 1.530 NaN 1.402
( NaN) (5.56) ( NaN) (5.81) ( NaN) (5.96)

CP NaN NaN 0.600 NaN 0.500 0.269
( NaN) ( NaN) (2.70) ( NaN) (2.42) (2.60)

Adj. R2 10.24 46.73 19.11 48.28 21.16 50.87

Panel C: maturity = 4 years
Const -0.008 -0.020 -0.016 -0.022 -0.017 -0.025

(-1.06) (-4.21) (-1.92) (-4.21) (-1.99) (-5.13)

VRP 0.003 NaN NaN 0.001 0.001 0.001
(1.47) ( NaN) ( NaN) (1.53) (0.77) (0.67)

FS NaN 1.318 NaN 1.275 NaN 1.192
( NaN) (5.63) ( NaN) (5.81) ( NaN) (5.88)

CP NaN NaN 0.597 NaN 0.532 0.261
( NaN) ( NaN) (2.33) ( NaN) (2.15) (1.92)

Adj. R2 3.90 39.05 11.85 39.17 11.55 40.38

Panel D: maturity = 5 years
(-0.82) (-3.45) (-1.49) (-3.30) (-1.65) (-3.78)

VRP 0.003 NaN NaN -0.000 0.002 -0.000
(1.86) ( NaN) ( NaN) (-0.13) (1.24) (-0.48)

FS NaN 1.130 NaN 1.138 NaN 1.083
( NaN) (5.02) ( NaN) (4.81) ( NaN) (4.78)

CP NaN NaN 0.617 NaN 0.514 0.182
( NaN) ( NaN) (2.09) ( NaN) (1.77) (1.00)

Adj. R2 4.41 33.87 8.84 33.02 9.18 32.8347



Table 8: Bond Return Predictability with Swaptions VRP: 1-year Holding Period

This table presents regression results for the following regression: rx
(τ)
t+h = β

(τ)
0 + β

(τ)
1 (h)V RPt +∑2

j=1 β
(τ)
j (h)Ft,j + ε

(τ)
t+h, where rx

(τ)
t+h are excess returns on Treasury bonds, h = 1 year and τ = 2, . . . , 5

years. V RPt is the expected variance risk premium derived from swaptions market, Ft,j , j = 1, 2 is the
Cochrane-Piazzesi and the forward spread factors. t-statistics in parentheses are calculated using Newey and
West (1987) standard errors. Adjusted R2 are given in percentage points. The sample is from February 2005
to December 2012, monthly frequency. Treasury excess returns are computed using Fama-Bliss data set.

Panel A: maturity = 2 years
Const 0.012 0.011 0.010 0.012 0.011 0.011

(4.68) (4.69) (3.16) (4.32) (3.19) (3.21)

VRP -0.001 NaN NaN -0.001 -0.001 -0.001
(-1.41) ( NaN) ( NaN) (-1.66) (-2.00) (-2.18)

FS NaN -0.123 NaN -0.035 NaN -0.079
( NaN) (-0.39) ( NaN) (-0.12) ( NaN) (-0.29)

CP NaN NaN 0.009 NaN 0.067 0.074
( NaN) ( NaN) (0.09) ( NaN) (0.72) (0.81)

Adj. R2 3.38 -0.79 -1.42 2.01 3.29 2.09

Panel B: maturity = 3 years
Const 0.027 0.024 0.023 0.026 0.025 0.025

(6.12) (4.41) (4.00) (4.47) (4.04) (3.75)

VRP -0.002 NaN NaN -0.002 -0.002 -0.002
(-1.68) ( NaN) ( NaN) (-2.36) (-2.45) (-2.79)

FS NaN -0.050 NaN 0.101 NaN 0.039
( NaN) (-0.14) ( NaN) (0.32) ( NaN) (0.13)

CP NaN NaN 0.008 NaN 0.128 0.121
( NaN) ( NaN) (0.05) ( NaN) (0.78) (0.79)

Adj. R2 5.41 -1.35 -1.44 4.38 5.61 4.25

Panel C: maturity = 4 years
Const 0.042 0.032 0.035 0.037 0.038 0.035

(6.90) (3.68) (4.23) (3.99) (4.30) (3.55)

VRP -0.003 NaN NaN -0.003 -0.003 -0.004
(-1.89) ( NaN) ( NaN) (-3.71) (-3.10) (-4.15)

FS NaN 0.329 NaN 0.483 NaN 0.442
( NaN) (0.94) ( NaN) (1.55) ( NaN) (1.50)

CP NaN NaN 0.037 NaN 0.237 0.123
( NaN) ( NaN) (0.13) ( NaN) (0.89) (0.56)

Adj. R2 7.21 2.59 -1.38 14.13 8.45 13.49

Panel D: maturity = 5 years
(6.98) (4.21) (4.30) (4.40) (4.28) (3.78)

VRP -0.002 NaN NaN -0.004 -0.003 -0.004
(-1.17) ( NaN) ( NaN) (-3.76) (-2.40) (-4.18)

FS NaN 0.305 NaN 0.568 NaN 0.499
( NaN) (0.89) ( NaN) (1.76) ( NaN) (1.78)

CP NaN NaN 0.196 NaN 0.383 0.212
( NaN) ( NaN) (0.51) ( NaN) (1.06) (0.72)

Adj. R2 1.86 2.20 -0.12 10.40 4.74 10.26
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Figure 1: The model-implied yield curve without and with long-run risk compo-
nent.

The figure plots the average zero-coupon nominal yield curve as observed in the data using
the sample of January 1991 - December 2010 monthly data as the solid blue line and the
model-implied yield curve without long-run risk component (Panel (a)) and with long-run
risk component (Panel (b)) as a dashed red line.
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Figure 2: Equity variance risk premium

This figure plots the implied variance (top panel), the expected variance (middle panel),
and their difference, the variance risk premium, (the bottom panel) for the S&P 500 index.
Sample period is from January 1990 to December 2012. Blue shaded bars indicate NBER
recessions.
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Figure 3: Swaptions-based variance risk premium

This figure plots the implied variance (top panel), the expected variance (middle panel), and
their difference, the variance risk premium, (the bottom panel) derived from interest rate
swaptions. The implied variance risk premium is corresponds to the one-month swaption on
10-year interest rate. Realized variance is derived from intraday 10-year interest rate swaps
data. Sample period is from February 2005 to December 2012. Blue shaded bar indicates
NBER recession.
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