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Résumé :

De nombreux modéles macroéconomiques incorporent des équations “hybrides”, dans lesquelles
certaines variables sont fonctions & la fois de leurs valeurs retardées et de leur anticipation.
La courbe de Phillips hybride de la “nouvelle économie keynésienne” en constitue une illustra-
tion. Les estimations de ce type de modeéles ont produit des résultats empiriques contrastés :
les études qui utilisent des estimations par maximum de vraisemblance (MV) tendent & trou-
ver une composante retardée dominante, alors que les études mettant en ceuvre la méthode
des moments généralisée (MMG) trouvent que la dynamique de I'inflation est essentiellement
tournée vers I’avenir.

Ce papier propose une explication a ces résultats conflictuels. En introduisant deux types
d’erreur de spécification standard (erreur de mesure et dynamique manquante), nous mon-
trons que l'estimateur MV tend & sous-évaluer le poids de la composante anticipée, alors que
Pestimateur MMG tend & la sur-évaluer. Nous obtenons ce résultat de fagon analytique dans
un modéle simple. Des simulations de Monte-Carlo indiquent que I'ordonnancement des es-
timateurs demeure valide pour une large étendue de modéles. A I'aide de simulations, nous
trouvons que I’écart obtenu entre les deux estimateurs MMG et MV dans le contexte de la
nouvelle courbe de Phillips peut s’expliquer par une erreur de spécification plus facilement
que par des biais de petit échantillon parfois invoqués.

Mots-clés : Modeéles & anticipations rationnelles, Méthode des moments généralisée, Maxi-
mum de vraisemblance, Inflation, Nouvelle courbe de Phillips.

Abstract:

Many macroeconomic models involve hybrid equations, in which some variables are a function
of both their lags and their expected future value. The hybrid “New Keynesian” Phillips Curve
is a prominent example. Estimates of such hybrid models have produced conflicting empirical
results: Studies which use ML estimation tend to find the forward-looking component to be
small, while those using GMM have reported the inflation dynamics to be predominantly
forward-looking.

This paper provides a rationalization for this empirical conflict. Allowing for two alternative
and straightforward mis-specifications (measurement error and omitted dynamics) in a hybrid
model, we show that the ML estimator tends to undervalue the weight of the forward-looking
component, while the GMM estimator tends to overstate it. This result is shown to hold
analytically in a simple DGP. Monte-Carlo experiments indicate that it remains valid in a
wide range of more plausible DGPs. Simulations also suggest that the gap obtained between
the two estimators in the context of the new Phillips curve can more readily be accounted for
by mis-specification, than by the finite-sample biases.

Keywords: Rational-expectation model, GMM estimator, ML estimator, Inflation, New
Phillips curve.

JEL classification: C10, C22, E31.



Résumé non technique :

De nombreux modéles macroéconomiques incorporent des équations “hybrides”, dans lesquelles
certaines variables sont fonctions a la fois de leurs valeurs retardées et de leur valeur future
anticipée. L’appellation hybride renvoie au fait qu’'un tel modeéle englobe une spécification
uniquement fondée sur des termes d’anticipations, telle qu’elle peut étre dérivée par la théorie
économique — typiquement au travers d’'une équation d’Euler —, et une spécification plus em-
pirique, du type autorégressive a retards échelonnés. La courbe de Phillips hybride de la
“nouvelle économie keynésienne” constitue une illustration notable de ce type de spécifica-
tions. L’intérét de cette courbe de Phillips hybride, proposée par Fuhrer et Moore (1995),
Gali et Gertler (1999) ou Christiano, Eichenbaum, et Evans (2001), est de rendre compte
de l'inertie de l'inflation, non prédite par les modéles théoriques sous-jacents a la “nouvelle
courbe de Phillips” (Taylor, 1980, Rotemberg, 1982 ou Calvo, 1983) dans laquelle la fixation
des prix est purement tournée vers le futur.

Sous I’hypothése d’anticipations rationnelles, I'estimation de modéles de type hybride est
généralement menée en utilisant soit la méthode du maximum de vraisemblance (MV), soit la
méthode de moments généralisée (MMG). A ces deux méthodes sont associées deux maniéres
de prendre en compte la présence dans le modéle de la variable d’anticipation, qui n’est
pas observée par ’économeétre. La MMG repose sur la projection de la valeur future de la
variable d’inflation (observée ex post par I’économetre) sur un ensemble potentiellement large
d’instruments, sans spécifier la loi d’évolution des variables explicative. La méthode du ML
repose sur la spécification d’un modeéle complet décrivant la dynamique propre de variables
explicatives, et utilise la résolution de ce modeéle pour contruire une valeur implicite d’inflation
anticipée cohérente avec le modele. Or, les estimations de courbes de Phillips hybrides ont a
ce jour produit des résultats empiriques contrastés, en particulier en ce qui concerne le poids
relatif des composantes anticipée et inertielle dans la détermination du taux d’inflation. Les
études qui utilisent I'estimation par MV tendent a trouver une composante retardée (inertielle)
dominante, alors que les études mettant en ceuvre la MMG trouvent que la dynamique de
I'inflation est essentiellement influencée par les anticipations.

Le présent article propose une explication & ces résultats conflictuels. Tout d’abord, nous
soulignons & l’aide de simulations que, sauf & introduire un nombre trés important de vari-
ables instrumentales redondantes, les biais de petit échantillon des estimateurs ne peuvent
conduire a une différence subtantielle dans ’estimation du poids de la composante anticipée
de l'inflation. En revanche, 'introduction de deux types d’erreur de spécification standard (er-
reur de mesure et dynamique manquante) nous permet de d’obtenir une différence importante
entre les estimateurs obtenus par les deux méthodes. Il est notamment montré que ’estimateur
MYV tend a sous-évaluer le poids de la composante anticipée, alors que 'estimateur MMG tend
a la sur-évaluer. Ce résultat est obtenu de facon analytique dans un modeéle simple. Des sim-
ulations de Monte-Carlo indiquent qu’un tel ordonnancement des estimateurs MMG et MV
demeure valide pour une large étendue de valeurs des parameétres.

Les résultats obtenus conduisent & mettre ’accent sur une configuration particuliére dans
laquelle le biais affectant les estimateurs MV et MMG est de sens opposé. Il s’agit du cas ol
une variable explicative est omise de I’équation d’intérét, tout en étant introduite dans le jeu
d’instruments de la MMG. Dans un tel cas, la valeur “prévue” de la variable endogéne future,



implicitement utilisée dans I’équation d’intérét par la MMG, et obtenue par projection de la
valeur future réalisée sur les différents instruments, est une fonction de la variable omise. Dés
lors, cette valeur “prévue” tend & capturer I'effet de la variable omise sur la variable d’intérét,
et le parametre associé a la composante anticipée est sur-évalué.

Dans la partie empirique de notre travail, nous utilisons les résultats obtenus afin de
revisiter les estimations de la courbe de Phillips hybride sur données américaines. Un écart
entre les deux méthodes apparait bien quant a ’estimation du poids de la composante anticipée
de linflation. A l'aide de simulations, nous montrons qu'une grande partie de I’écart obtenu
entre les deux estimations MMG et MV peut s’expliquer par une erreur de spécification de
type “dynamique omise”. Les biais de petit échantillon, parfois invoqués, ne fournissent pas
une explication satisfaisante.

Il convient bien str de souligner que 'utilisation d’une spécification de type “hybride”
n’est pas limitée au cas de la courbe de Phillips ici étudié, et apparait également dans un
grand nombre d’applications macroéconomiques comme des équations de consommation, de
formation des stocks, d’investissement, etc. Tester la pertinence des résultats obtenus ici
pour ces différents domaines d’application constitue une voie d’approfondissement possible du
présent travail.

Non-technical summary:

Many macroeconomic models involve estimating a “hybrid” equation, in which the variable
of interest depends on its expected future value and its lagged value. Such a specification has
been referred to as hybrid, because it nests a forward-looking specification often derived from
a Euler condition as well as the backward-looking autoregressive distributed-lag specification.
A prominent example is the hybrid Phillips Curve, in which the inflation rate depends on its
own lead and lag and on real marginal cost. This model has been proposed by Fuhrer and
Moore (1995), Gali and Gertler (1999) and Christiano, Eichenbaum, and Evans (2001), in
order to introduce some inflation persistence in the purely forward-looking model of Taylor
(1980), Rotemberg (1982), and Calvo (1983).

Estimation of such an equation under the rational-expectation assumption typically in-
volves either the Generalized-Method-of-Moment (GMM) or the Maximum-Likelihood (ML)
approach. GMM and ML are alternative procedures to cope with the unobserved forward-
looking component of the hybrid model. On one hand, GMM expresses the expected variable
as a function of an instrument set, without referring to the structure of the process driving
the forcing variable. On the other hand, ML produces model-consistent forecasts in taking
into account the structure of the equation for the forcing variable. While the two approaches
are asymptotically equivalent, a recurrent finding is that empirical estimates of the hybrid
model produce contrasting results, suggesting that the estimation method plays a role in the
conflict. For instance, studies based on the ML approach tend to obtain that the forward-
looking component in US inflation is essentially unimportant. In contrast, studies using the
GMM approach generally report that the forward-looking component is dominant.

The purpose of the present paper is to rationalize the discrepancy between empirical es-
timates obtained using the ML and GMM approaches, with a focus on the forward-looking



parameter. We first point that, unless a large number of irrelevant instruments is used, finite-
sample biases are not likely to fill the gap between parameter estimates typically obtained
in empirical applications. We then show that two natural mis-specifications (measurement
error in the forcing variable and omitted dynamics) can produce large discrepancies. These
results are established analytically in a stylized representative framework. Interestingly, in
most cases, the probability limits of the GMM and ML estimators of the degree of forward-
lookingness are biased in opposite directions with respect to the true value of the parameter.
Using Monte-Carlo simulations, we illustrate that the discrepancy of estimators carries on to
more complex models, which cannot be solved analytically. Our results shed some light on
the long-lasting empirical debate over the importance of the forward-looking component in
the hybrid Phillips curve. Our evidence suggests that the conflict between estimates reported
in the empirical literature may be rationalized by an omitted dynamics.

Results in the present paper point to one critical source of the discrepancy in estimators
of a hybrid equation: that a relevant forcing variable is omitted from the estimated equation
but included in the GMM instrument set. Such an instance, rather likely if a large number of
instruments is used, will cause the lead of the dependent variable to capture the effect of the
omitted variable, and its parameter to be over-estimated. In the type of set-up analyzed here,
mis-specification of the equation of interest is typically found to be more harmful to the GMM
estimator than to the ML estimator. This finding to some extent balances the well-known
fact that in rational-expectation models, ML may, unlike GMM, suffer from mis-specification
of the auxiliary model.

In the empirical part, we use our theoretical results to investigate the contrasting estimates
of the hybrid Phillips curve obtained on US data. We actually obtain a gap between GMM
and ML estimates of the forward-looking component. Using Monte-Carlo simulations, we show
that a large part of the discrepancy between the two estimates can be explained by a mis-
specification such as an omitted dynamics. Finite-sample biases, in contrast, are not able to
fill the gap between these estimates.

It is worth noticing that the hybrid specification is not restricted to the Phillips curve and
may be relevant for a number of macroeconomic variables, such as consumption, stocks, or
investment. Investigating the relevance of our results to these various fields is left for further
research.



1 Introduction
Many macroeconomic models involve estimating a “hybrid” equation of the form:
Y =wiEYi1 +wpYio1 + B2 + &y, (1)

where Y; denotes the dependent variable, Z; the forcing variable, e; the error term, and E; the
expectation conditional on the available information. Such a specification has been referred to
as hybrid, because it nests a forward-looking specification often derived from a Euler condition
as well as the backward-looking autoregressive distributed-lag specification.

A prominent example is the hybrid Phillips Curve, in which the inflation rate depends on
its own lead and lag and on real marginal cost. This model has been proposed by Fuhrer and
Moore (1995), Gali and Gertler (1999), and Christiano, Eichenbaum, and Evans (2001), in
order to introduce some inflation persistence in the purely forward-looking model of Taylor
(1980), Rotemberg (1982), and Calvo (1983). Several interpretations for the presence of a lag
in equation (1) have been put forward in the recent literature on the Phillips curve:

For instance, in a model with staggered contracts, such a specification is obtained when
agents care about relative real wages over the life of the wage contract (Fuhrer and Moore,
1995), while some firms using a non-rational rule of thumb to set their price may set their
price on the basis of past inflation (Gali and Gertler, 1999, or Amato and Laubach, 2003).
Kozicki and Tinsley (2002) also suggest that equation (1) may be viewed as the reduced form
of rational-expectation models with frictions on price adjustment. Alternative illustrations of
equation (1) may be found in the literature on inventories (Fuhrer, Moore, and Schuh, 1995),
on investment (Oliner, Rudebusch, and Sichel, 1996), on consumption (Fuhrer, 2000), or more
recently on output gap (Fuhrer and Rudebusch, 2002).

Estimation of equation (1) under the rational-expectation assumption typically involves ei-
ther the Generalized Method of Moment (GMM) or the Maximum-Likelihood (ML) approach,
to cope with the unobserved forward-looking component of the hybrid model.! On one hand,
GMM expresses the expected variable F;Y;1+1 as a function of an instrument set, without
referring to the structure of the process driving the forcing variable. On the other hand, ML
produces model-consistent forecasts of Y1 in taking into account the structure of the equa-
tion for Z;. While the two approaches are asymptotically equivalent, a recurrent finding is
that empirical estimates of the hybrid model produce contrasting results, suggesting that the
estimation method plays a role in the conflict. For instance, Fuhrer (1997), using the ML ap-
proach, finds the forward-looking component in US inflation to be essentially unimportant. In
contrast, Gali and Gertler (1999), using the GMM approach, report that the forward-looking
component is dominant.? Similarly, Fuhrer and Rudebusch (2002) estimate a hybrid I-S curve

' The present paper does not focus on the comparison of GMM and ML as estimation methods per se, but
rather as alternative procedures to perform a projection of a rational-expectation term onto an information set.
In particular, we do not put emphasis on issues such as choosing the precise shape of the likelihood function
or the optimal GMM weighting matrix. In particular, in the case we consider analytically, GMM reduces to
two-stage least-square estimation.

?There are some exceptions to this broad picture. Kurmann (2002) obtains a dominant forward-looking
component, while using an ML estimation approach. In contrast, Ma (2002) obtains GMM estimates in which
lagged inflation is almost as important as expected inflation.



using both estimation procedures, and find that the GMM estimate of the forward-looking
parameter is systematically larger than the ML estimate.

The purpose of the present paper is to rationalize the discrepancy between empirical es-
timates obtained using the ML and GMM approaches, with a focus on the forward-looking
parameter wy. This parameter is indeed crucial in many applications. For instance, in the
new Phillips curve context, the value of this parameter has dramatic implications for policy
purposes, since it directly affects the effectiveness of monetary policy (see Fuhrer, 1997). We
first point that, unless a large number of irrelevant instruments is used, finite-sample biases
are unlikely to fill the gap between parameter estimates typically obtained in empirical appli-
cations. We then show that two natural mis-specifications (measurement error in the forcing
variable and omitted dynamics) can produce large discrepancies. These results are established
analytically in a stylized representative framework. Interestingly, in most cases, the probabil-
ity limits of the GMM and ML estimators of the degree of forward-lookingness are biased in
opposite directions with respect to the true value of the parameter. Using Monte-Carlo sim-
ulations, we illustrate that the discrepancy of estimators carries on to more realistic models,
which cannot be solved analytically. Our results shed some light on the long-lasting empirical
debate over the importance of the forward-looking component in the hybrid Phillips curve.
Our evidence suggests that the conflict between estimates reported in the empirical literature
may be rationalized, to a great extent, by an omitted dynamics.

The issue we are concerned with has been tackled by several recent papers. On one hand,
we build on papers which analyze GMM estimators under mis-specification in the context of
the new Phillips curve. First, Rudd and Whelan (2001) consider the case where a variable
is missing in the estimated regression, but included in the instrument set. Second, Mavroei-
dis (2001) discusses identification in the new Phillips curve, and investigates mis-specification
based on omitted dynamics. On the other hand, Lindé (2001) compares the finite-sample
performance of GMM and ML estimates of the hybrid Phillips curve using Monte-Carlo sim-
ulations and investigates the consequences of a measurement error in the output gap. In the
context of a hybrid Euler equation for output, Fuhrer and Rudebusch (2002) explore the extent
of the finite-sample bias of GMM and ML estimates using simulations as well. The present
paper extends the previous literature by providing analytical results related to both GMM
and ML estimators under mis-specification.

The remainder of the paper is organized as follows. In Section 2, we describe the stylized
DGP used in our analysis, and describe the GMM and ML estimators. We also investigate the
size of the finite-sample bias of those estimators. Section 3 explores how measurement error in
the forcing variable and omitted dynamics affect the estimator bias. Several analytical results
concerning the ranking of estimators are proposed. In Section 4, we consider a more general
model with some feedback from the dependent variable towards the forcing variable. This case
is investigated using Monte-Carlo experiments, since the model cannot be solved analytically.
In Section 5, we illustrate that the contrasting findings obtained in the empirical literature on
the new Phillips curve can be rationalized using the results obtained in this paper. Section 6
provides concluding remarks.



2 A stylized DGP with a single lag and lead hybrid equation

2.1 The DGP

In this section, we begin with a description of our baseline DGP and of the estimators that
will be used in the remaining of the paper. The stylized DGP includes the hybrid equation,
in which both a lag and an expected lead of the dependent variable are introduced, as well as
an AR(1) forcing variable:

i = wiEYii+ (1 —wyp)Yi1+ 87 + & (2)
Zy = pli_1 + uy. (3)

Typically, in the hybrid Phillips curve, Y; represents inflation and Z; the (log) real marginal
cost. We assume the data to be centered. For convenience, error terms ¢; and u; are as-
sumed to be contemporaneously and serially uncorrelated white noises, with 02 = E (5,52) and

02 = E (u}). Structural parameters are therefore £ = {wy, B, p,02,02%}, with {wy, 3,02} the

u
parameters of interest, and { 0, O'Z} the nuisance paurameters.3

In order to obtain analytical solutions, we assume, for the moment, that the dynamics
of the forcing variable is given by an AR(1) process, so that Z; is strongly exogenous with
respect to the parameters of interest. In addition, for the parameters to be identified, we also
impose that the sum the forward-looking and backward-looking parameters sum to one, so
that wy +wp = 1. Such an assumption is implied by the theoretical derivations of the hybrid
Phillips curve in Fuhrer and Moore (1995) or Christiano, Eichenbaum, and Evans (2001).
Moreover, the underlying structural model proposed by Gali and Gertler (1999) implies that
wy + wp is very close to, but strictly less than, one.

The properties of the model can be derived from the characteristic polynomial given by
(1—wfL™' — (1 —wy) L). The two roots are ¢; = (1 —wy) /ws and ¢, = 1. According to the
conditions for existence and uniqueness of solution to rational-expectation models, established
by Blanchard and Kahn (1980), two situations can be encountered in the case wy + wy = 1.
When wy < 0.5 (i.e., ¢y > 1), the solution is unique, but the process Y¥; is non-stationary. When
wy > 0.5 (i.e., ¢; < 1), existence of a stationary solution is guaranteed, but the solution is
not unique. Stationarity of the model also requires the forcing variable to be stationary, which
implies |p| < 1.

Since our purpose is to compare the properties of estimators in the context of a hybrid
equation, we are primarily interested in stationary models and, therefore, we assume, for the
moment, that w; > 0.5. Note that, when more general dynamics of the forcing variable are
considered, a stationary process can be attained for a wider range of values for wy. This issue is
addressed in details in Section 4, in which the forcing variable is allowed to depend on Y;_1.*
Note also that, since in many models wy can be viewed as the fraction of forward-looking
agents, economic interpretation suggests wy < 1 (i.e., ¢; > 0), although this assumption is
not necessary from a statistical viewpoint for the process Y; to be stationary. Our maintained

3These parameters are considered as structural here, but they are usually defined as functions of “deep”
parameters which reflect constraints and preferences of agents.

“In the empirical part of the paper, we will also relax our assumption and allow wyf 4+ wp to be smaller than
one.



assumptions for the model (2)—(3) are thus 0.5 < wy <1 (or, equivalently, 0 < ¢; < 1) and
| < 1.
Under stationarity, the reduced-form, fundamental solution of the DGP is given by

Yi=01Yio1 + 07 + & 4)

where 6 = 3/ (wy(1 = p)), and & = et/wy. We define 52 = E (87) = 02 JwF.

Before discussing the way estimators are constructed, we need to address the important
issue of non-uniqueness of the solution which occurs when wy > 0.5. The general form repre-
sentation is given by solving equation (2) for Y; 1, which yields

1 —wy I6]

1 1
Y, =—Y, 1 — Yio——Zy1——& 1+ (5)
wy wy

w

where (; = Y; — Ey—1Y% is the agents’ forecast error. Under rational expectations, the process
(; is a martingale difference sequence, such that E;_1(; = 0. The general solution (5) always
satisfies equation (2). However, it reduces to the forward-looking solution (4) only when
Ct = gt + 9ut.

The generic solution is then given by

Y: = (,01}/;571 + QZt + & + ft (6)

where ¢, satisfies®
& =81 — & —Our + (. (7)

An important consequence of this result is that, among the infinite set of solutions to the
problem (2)—(3), only the sunspot-free (fundamental) solution (4) defines a stationary process
Y;. This result comes from that equation (7) defines a non-stationary process &;.

In the remainder, we will focus on the stationary solution for the process Y;, given by
equation (4). In the new Phillips curve context, as in other applications, it is economically
reasonable to rule out non-stationary bubbles. Note, in addition, that such a non-stationary
representation for a hybrid model is very unlikely to occur in a more general dynamic equilib-

rium model with rational expectations.5

®This result is obtained by observing that the general form representation (5) can be rewritten, using
equation (7)

1 1-— 1 -
Vie v -1y, B L (6 6 R+ 0w)
Wy Wy wr
(1= 1) (1= iL) Ve = s (Ze = Zema) + (e = Eec) + (6= €,01)
B .
Y: = ¢, Yo —7
t ¢1t1+Wf(1*p) t 4+ &+ &4,

which is equation (6).

SFor instance, in the model proposed by Christiano, Eichenbaum, and Evans (2001), the hybrid Phillips
curve is designed as our equation (2), with wy = §/(1+6), ws = 1/ (1 +6), and wy + w, = 1. In addition,
6 is the discount factor, so that wy is lower than 0.5. Therefore, in a set-up like equations (2)—(3), even
with a stationary forcing variable, the Blanchard-Kahn conditions indicate that the inflation process would be
non-stationary. In the complete model, however, the process for the forcing variable allows for feedback from
inflation, so that the inflation process is readily stationary.



An alternative way to single out the rational-expectation solution (4) is to resort to the
minimum state variable approach developed by McCallum (1983), who argues that agents will
include in their forecasting rules a minimal set of state variables.” A definite advantage of this
procedure is that it does not rely upon any assumption or condition concerning the dynamic
stability of the system. In our context, the minimum state variable approach precludes Y; o
from the reduced-form solution (5).

2.2 Estimators

Since one of the regressors (the expected term) is correlated to the error term, OLS estimation
of the equation
Vi =wiYip1 + (1 —wy)Yiq + 82 + €,

where €} = ¢y —w 7 (Yiq1 — E;Yi41), yields inconsistent estimators. Two alternative estimation
procedures can then be considered to cope with this problem, GMM and ML.

2.2.1 The GMM estimator

The GMM approach reduces to the two-stage least-square estimation in this framework. It
consists in regressing Y;;1 on instruments which are uncorrelated with the error term e}
but correlated with the endogenous regressor (Yi+1). Since two parameters (¢; and 6 or,
equivalently, ws and [3) have to be estimated, at least two instruments are needed to achieve
identification. Assuming the econometrician knows the true specification (2), but does not
want to specify the dynamics of the forcing variable, the optimal GMM estimator is obtained
using as instrument set {Y; 1, Z;}. This estimator relies on the following moment conditions:

ElYie1 - (Yi—wsYip1 — (1 —wp) Yy = 8Z)] = 0
ElZ - (Yi —wiYin — (1 —wyp) Y1 = 8Z)] = 0.

Since the model is just-identified, the probability limits (Plims) of the estimator are directly
obtained by solving these moment conditions. As Z; is in the instrument set, solving moment
conditions is equivalent to the following two-step problem: First, Y;;1 is regressed on Y; 1
and Z, giving the expectation ?Hl conditional on the instrument set. Second, (Y; —Y; 1) is

~

regressed on (Y}H — Yt,l) and Z;, yielding consistent parameter estimators.

2.2.2 The ML estimator

The second approach is the ML procedure, which relies on using equation (3) to solve equation
(2) iteratively forward. Estimating the reduced-form equation (4) together with equation
(3) and imposing cross-equation restrictions allow one to recover the structural parameters.
Parameters ¢; and 6 in equation (4) and p in equation (3) can be estimated by OLS directly.
Then, estimators of w; and  are deduced from the relations wy = 1/(14+¢;) and § =
fw (1 — p). Since estimation is performed after the hybrid model has been solved iteratively
forward, ML estimators are obtained under the assumption that forecasts are fully model-
consistent. The crucial difference between GMM and ML approaches is that ML imposes some

"This argument has been reinforced by the literature on learning in rational-expectation models, which
shows that the minimum state variable solution is the only stable solution (Evans and Honkapohja, 1998).
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constraints upon the way Y;y1is projected onto the state variables, through the dynamics of
Zy used to solve the model. In contrast, GMM does not impose any constraint of this type on
the first-stage regression.

Since innovations are assumed to be uncorrelated, this two-step approach is equivalent to
the full-information ML. When the model is more realistic (for instance, when a feedback from
Y;_1 to Z; is allowed), the model generally cannot be solved analytically (see Section 4).

The GMM and ML estimators presented above have the same Plim when the estimated
model is correctly specified. Yet, in many empirical applications of the hybrid model, the gap
between GMM and ML estimates has been found to be very large. Two reasons are likely to
explain such a discrepancy between GMM and ML estimators: (1) There may be differences in
the finite-sample properties of the estimators. (2) The estimated model may be mis-specified,
yielding inconsistency of GMM as well as ML estimators. The remaining of the paper considers
these two explanations in turn.

2.3 Finite-sample biases

This section investigates the finite-sample properties of the GMM and ML estimators assuming
that the model is correctly specified. As in earlier studies, we rely on Monte-Carlo simulations
to evaluate the finite-sample distribution of the estimators.

An abundant literature has studied the finite-sample properties of the GMM estimator,
in very different contexts (see Fuhrer, Moore, and Schuh, 1995, or the 1996 special issue of
the JBES). These papers provided evidence that the GMM estimator may be strongly biased
and widely dispersed in finite sample. The size of this bias is related to weak instrument
relevance (i.e., weak correlation between instruments and endogenous regressors) or to instru-
ment redundancy. This issue has been addressed, among others, by Nelson and Startz (1990),
Hall, Rudebusch, and Wilcox (1996), or Staiger and Stock (1997). The ML estimator may
suffer from finite-sample bias as well. Few studies have focused on the finite-sample properties
of the ML estimator in rational-expectation models (see Fuhrer, Moore, and Schuh, 1995,
Lindé, 2001, Fuhrer and Rudebusch, 2002, Jondeau, Le Bihan, and Galles, 2003). The ML
finite-sample bias is generally considered to be negligible in this context.®

When the GMM approach is implemented, we have to select the instrument set. The
optimal instrument set in our set-up is Wy = {Y;_1,Z:}. This is our baseline case in the
following experiments. We also explore the case where lags of W; are introduced in the
instrument set, although they are actually redundant. Thus, we use instrument sets which
include Wy, ..., Wi_p, with L = 0 and 7. It is worth emphasizing that it is a common
practice in the empirical GMM literature to include several lags, without necessarily checking
their relevance. A dramatic drawback of this practice is the aforementioned weak instrument
relevance or instrument redundancy. It can be shown (Nelson and Startz, 1990) that the
GMM estimator is biased in direction of the OLS estimator (see also Staiger and Stock, 1997).
We thus have also considered the Plim of the (mis-specified) OLS estimator, which provides
an indication of the effect of weak instrument relevance on the finite-sample bias of GMM

®The ML estimator is not necessarily immune from finite-sample bias, however. In particular, in a partial-
adjustment context, the autoregressive parameter is biased downward, even when the model is correctly specified
(Sawa, 1978). Yet, this bias is rarely emphasized in Monte-Carlo experiments.
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estimates. Using the cross moments implied by DGP (2)—(3) (see Appendix 1), the Plims of
OLS estimators are found to be:

woLs = 1 G+ A% (1 - ) 5
2 82+ A2 [F(1-9}) + (1— 91|

~2 2 |2(1=p)=¢1 (1-p*
s = (5) 75 s e e
L - N )
o) 1=p | 52402 [§ (1-¢}) + (1= 01p)°]

where A = 0o,/ (1 — ¢,p). For a wide range of structural parameters, the OLS estimator of
wy is biased towards 0.5, although the Plim is not exactly 0.5. More precisely, the expression
above indicates that 0 < wors < 0.5. Such a result has been obtained numerically in several
Monte-Carlo studies, but not yet analytically. See, for instance, Lindé (2001), Mavroeidis
(2001), and Fuhrer and Rudebusch (2002).

2.3.1 Experiment design

Essentially, four structural parameters are likely to affect the finite-sample bias: The forward-
looking parameter wy, the serial correlation of the forcing variable p, the parameter of the
forcing variable 3, and the (square root of the) variance ratio 0, /0.. We consider the following
parameter sets in Monte-Carlo experiments: w; = {0.55;0.75;0.95}, p = {0.1;0.5;0.9}, 8 =
{0.1;1}, and o, /0. = {0.5;1;2}. Since we found that altering the variance ratio within this
range does not affect finite-sample biases significantly, only the case 0. = 0, = 1 is reported.

The Monte-Carlo experiment is performed as follows. For each parameter set, we simulate
2000 samples of size T = 100. For each simulated sample, a sequence of 7"+ 100 random
innovations are drawn from the Gaussian distribution N (0, X) with no serial correlation (X =
diag(c?,02)), and the first 100 entries are discarded to reduce the effect of initial conditions
on the solution path.

2.3.2 Results

Table 1 reports the median and the median of absolute deviations (MAD) of the empirical
distribution.? It also displays the Plim of the OLS estimator, towards which the Plim of GMM
estimator is biased, under weak instrument relevance or instrument redundancy. The main
results are as follows.

First, the ML estimator of wy is essentially unbiased, with a low standard deviation. The
estimator of 3 is unbiased for small values of p, while there is a slight positive bias when p is
large. "

90ne justification of the use of the median and MAD is that, in the just-identified case, the distribution of
the GMM estimator has no finite moments (Kinal, 1980). In addition, previous research on the finite-sample
properties of GMM has found the distribution of this estimator to be sometimes asymmetric and fat tailed
(Hansen, Heaton, and Yaron, 1996).

YFor p = 0.9, the median estimator of 8 ranges between 0.107 and 0.112, whatever the true parameter wg.
This bias is related to the downward bias in the autoregressive parameter established analytically by Sawa
(1978). Since 8 = Ows(1 — p), the negative bias in p translates in a positive bias in 8. Note that, since wy does
not depend on p, we do not observe such a bias for wy.
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Second, when the instrument set is correctly chosen (L = 0), the GMM estimator of wy is
not significantly biased. However, the standard deviation of the estimator (computed as the
standard deviation of the distribution) is much larger than the standard deviation of the ML
estimator.

Last, when the instrument set includes redundant lags (L = 7), the bias in the GMM
estimator of wy is significantly negative. The higher the true value of wy, the larger the
absolute bias in the estimator. For w; = 0.95, the absolute finite-sample bias is as high as 0.1.
In fact, the median estimate lies between the true value of the parameter and the Plim of the
OLS, which is found to be close to 0.5 for a wide range of structural parameters. For large p,
the bias in (3 is as high as 30% of the true value.

Result 1: When the model is correctly specified, the ML estimator does not display significant
finite-sample bias. The GMM estimator with optimal instruments is not significantly
biased, while the GMM estimator with an excessive number of instruments is significantly
biased towards the OLS estimator (close to 0.5).

This result confirms previous evidence obtained for instance by Mavroeidis (2001) and
Lindé (2001). Fuhrer and Rudebusch (2002) also report simulation results in which the GMM
estimator of w; is biased towards 0.5. It is worth noting, however, that the finite-sample
bias in wy is not likely to reconcile the conflicting empirical evidence observed for the hybrid
Phillips curve. Indeed, the GMM estimator is systematically biased towards (around) 0.5 in
our Monte-Carlo set-up, while estimates reported, for instance, by Gali and Gertler (1999)
suggest a bias, if any, towards one. In addition, the ML estimator does not display any
substantial finite-sample bias. Therefore, if ML estimates were to be close to the true values
of the DGP parameters, the GMM estimate of wy would be found to be lower than the ML
estimate, so that finite-sample bias would affect estimators in a direction opposite to that
suggested by empirical results in the existing literature.

3 Asymptotic bias in a mis-specified model

This section investigates the consequences of two types of mis-specification, measurement error
and omitted dynamics. Both mis-specifications appear to be plausible in many applications
of the hybrid model.

First, estimated new Phillips curves may suffer from measurement error. Theoretical
derivations suggest that the relevant forcing variable is the real marginal cost. While this
variable may be measured in a variety of fashions, empirical estimates typically involve either
the output gap or real unit labor cost (ULC) (Roberts, 2001, and Neiss and Nelson, 2002).
The approximation of real marginal cost by real ULC readily arises when firms produce using
a Cobb-Douglas technology with constant return to scale. Under some additional assumptions
about the labor supply process (Rotemberg and Woodford, 1997), the output gap is linearly
related to the real marginal cost. However, the measure of these proxies is also an open issue.
As detailed by Rotemberg and Woodford (1999), the real ULC measure has to be corrected in
various ways to approximate the real marginal cost under arguably more realistic technology
assumptions (such as a CES technology or overhead labor). In addition, conventional measures
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of output gap are likely to be ridden with error. The standard approach typically involves a
deterministic trend, which may fail to capture variations in the natural rate of output due,
e.g., to supply shocks. See Neiss and Nelson (2002) for a discussion and an alternative measure
of potential output based on a dynamic stochastic general equilibrium model.

Omitted dynamics is also a plausible mis-specification. Hybrid Phillips curves in which
additional lags and leads of inflation are incorporated were first suggested by Fuhrer and Moore
(1995) and Fuhrer (1997). Their model assumes that agents set nominal contract prices so that
the current real contract index depends on the real contract index expected to prevail over the
life of the contract. Therefore, in cases where prices are set for several quarters at a time, agents
are concerned by lags and leads of inflation symmetrically. Coenen and Wieland (2000) also
adopt such an approach, while Sbordone (2002) as well as Guerrieri (2001) consider a model
with optimizing firms, in which price commitments last for a fixed length of several periods.
Gali, Gertler, and Loépez-Salido (2001) propose a model which extends the model developed
in Galf and Gertler (1999): In contrast to the initial rule of thumb which was assumed to
depend on the last period’s inflation rate only, firms which adopt a non-rational behavior
consider an average of several lags. Kozicki and Tinsley (2002) have recently discussed the
empirical performances of alternative potential sources of lag dynamics in inflation (namely,
non-rational behavior, staggered contracting, frictions on price adjustment and shifts in the
long-run anchor of agent expectations). They obtain that additional lags (and leads) explain
the historical behavior of inflation in the US and Canada better than a purely forward-looking
model or a hybrid model with a single lag. In addition, models derived from assumptions
about staggered contracts or frictions on price adjustment provide a better fit of the data
than hybrid models with non-rational behavior. Rationalization for additional lags in hybrid
equations of the type (1) can also be found in other contexts. For instance, Otrok, Ravikumar,
and Whiteman (2002) have explored general forms of habit formation in the consumption
function, which can lead to a reduced form with several lags of consumption.

3.1 Mis-specification of type I: Measurement error
3.1.1 Analytical results
In order to illustrate the case of measurement error, we adopt the following DGP:

Vi = wiEBYii+ (1 —wp)Yio1 + 062+ &
Zy = pZi1+u
Xt = CLZt + €t (8)

where X is the proxy of the forcing variable used by the econometrician (e.g., the output gap or
the real ULC in the context of the hybrid Phillips curve, while the relevant forcing variable Z;
is the real marginal cost). The measurement error, e, is assumed to be contemporaneously and
serially uncorrelated with ¢; and u;, with 02 = E (e?). We also define 7 = a?c%/ (a®c% + 02),
the fraction of the variance of X; explained by Z;. Parameter 7 can be viewed as a measure
of the quality of the proxy X;. When 7 gets closer to one, the quality of the proxy improves.
While parameter a may be positive as well as negative, it is typically set equal to one in the
following. DGP parameters are £ = {wy, 3, p, a, 02,02, Ug} . The reduced form of the DGP is
given by equation (4) with the same stationarity conditions on model parameters.
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Since the econometrician is assumed to erroneously select X; as the forcing variable, the
following mis-specified model is estimated:!!

i = ofEYii+ (1 —ap) Yo +0X; + v 9)
Xy = YXio1 + wy. (10)

The estimated degree of forward-lookingness as is presumably a biased estimator of wy. Note
that there is no mis-specification in the limiting case where 02 = 0, i.e. 7 = 1, so that X, is
actually the true forcing variable.

The reduced form of the postulated system (9)—(10) is given by

Y, = (,OY;:fl + /LXt + ’171;, (11)

where ¢ = (1 —ay) Jayp, p=0b/(ap(1 —1)), and ¥y = v¢/ay. As in Section 2, we impose the
following conditions: 0.5 < ay <1 (or 0 < ¢ < 1) and |¢| < 1.

Since two parameters (ay and b) have to be estimated in the mis-specified model, at least
two instruments are needed to achieve identification. We consider two cases of particular
interest. The first estimator (GMM1) is based on the instrument set {Y;_1, X:}, while the
second estimator (GMM?2) resorts to the instrument set {Y;_1, X, Z¢}. In the latter case, the
instrument set includes the actual forcing variable. Both cases are likely to occur in empirical
applications. For instance, the first estimator may correspond to the case of the hybrid I-S
curve, as studied recently by Fuhrer and Rudebusch (2002). Instruments are lagged output
gap, inflation rate, and interest rate. Mis-specification may occur in this context because of an
appropriate definition of the real interest rate. In contrast, in the case of the hybrid Phillips
curve, the theoretically relevant forcing variable is the real marginal cost, while estimations
are performed using, alternatively, the output gap and the real ULC. Most studies (in the
following of Gali and Gertler, 1999) therefore include both the real ULC and output gap in
the instrument set. We may expect the real marginal cost to be well proxied by a linear
combination of the two variables.

GMM1. Estimator GMMI1 relies on the following moment conditions:
ElYio1 - (Y — agYip — (1 —ap) Yi —bX))] = 0 (12)
BX; - (Y —aYen — (1—ay) Y1 —bXy)] = 0. (13)

Parameter estimates are obtained by solving the empirical counterparts of these moment
conditions. The Plim of the estimator of ay is given by

E(Y?) — E(WiYi) + (B (XiYy) /E (XP)) (E (X4Yy) — E (X4Yi-1))
E(Y2) — E(YiY; 2) + (E(XiY:) /E (X?)) (E (XiY: 1) — E(X; 1Y3))’

AGMM1 =

' Combining equations (3) and (8) should yield an ARMA process for X;, because the measurement error
introduces a first-order serial correlation in the error term of X;. In the case a = 1, the process for X; can
be written as X; = pXi—1 + wr — cwi—1, with ¢ = (012” +\/od —4p20§) / (2po§) and o2, = pa?i/c. Such
an approach is not followed, however, because it would not be consistent with the standard approach of a
low-order VAR-type model. Estimating equation (10), thus omitting the MA component, yields a Plim of the
autoregressive parameter ¢ equal to pt.
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while the Plim of the estimator of b, denoted bgarari, is obtained by replacing af by agaran
in the expression (13). Although the moment conditions are written using the mis-specified
model (9), the moments are actually computed using the true DGP.

GMM2. Since estimator GMM2 is over-identified, it proves convenient to view it as a two-
step estimator.'? First, we regress Y;,1 on the instrument set to build the fitted value. For
simplicity of the exposition, we define 25+1 as the expectation of Y1 conditional on the
information set. Since the true forcing variable Z; is in the instrument set, we obtain, using
equations (3) and (4), that ;11 = @2Yi_1 + 0 (¢, + p) Zi. Then, the second-stage regression
has the form

Yi = Yie1 = ay (Vier = Yie1 ) +0X; + 0] (14)

which can be estimated by OLS. Plims of estimators of ay and b are thus obtained by solving
the two following moment conditions:

E[(Yir1 = Yie1) - (Vi =@V = (1= ap) Vi =bXi)| = 0 (15)
E[Xt-(n—afﬁﬂ—a—af)yt_l—bxt)} = 0. (16)

ML. The ML estimator is obtained by estimating by OLS the reduced form of the model,
given by equations (10) and (11). Plims of the estimators of ¢ and p are directly given by

~9 2 p(1—¢2)
oy = EEHENY) BV )BXY) _ (TN L+a-nEe
ML — =
E(X}) E (Y?) - B (XtYi-1) 52+ A2 [1+ (1 - ) Za)]
) _ EYAHEWMXy) - E(XY1)E (YY) 07 724+ A2
ML - 2 2 2 — 9\ 2
E(X}) E(Y?) — E(XiYi1) a 52+ A2 [1+(1_7)%]

where the last equation indicates that the estimator of u is a biased estimator of 6.
Then, the Plims of parameters ay and b are deduced from the relations oy = 1/ (1 + ¢)

and b = pay (1 —1)).

Since the hybrid model is estimated using X; as forcing variable in place of Z;, there exists
an asymptotic bias, the extent of which is directly related to the correlation between the two
variables X; and Z;. The following proposition summarizes the Plims of GMM as well as ML
estimators described above.

Proposition 1 (Plim of estimators in case of measurement error) Let us assume that
the DGP is given by equations (2)—(3), but that the econometrician estimates the model with
X in place of Zy as the forcing variable, corresponding to equations (9)—(10). Then, the three
estimators defined above have the following Plims:

2To obtain analytical results, we abstract from the issue of selecting an optimal weighting matrix. In a

correctly-specified model, the two-step least-square approach adopted here yields a consistent estimator of the
true parameter. As put forward by Hall and Inoue (2003), in case of mis-specification, different weighting
matrices may yield different asymptotic biases. We do not consider this issue here, and leave it for further
investigation.

16



- GMM estimator with instrument set {Yi_1, X} (GMM1):

(&gmz[l—(l_ﬂi—ﬁ'“*w ])
wr

Ttp
G2+ A2[1— (1 —7)ppy]

o = () i
GuMm1 = G2+ A2[1— (1 —7)pp]

- GMM estimator with instrument set {Y;_1, X, Zt} (GMM?2):

aGgmMmM1 =

52+ A2 1+ (1 - 1) 42

qeMM2 = Cf ~2 2 (1—p2)p?
Gi+A [1 +(1- T)i(l—ap%) }
b (B 52 + A2
az = \a') | = (1—p?)p]
Gz + A? [1 +(1- 7')—21}
(1*5"1)

- ML estimator:

2\ .2
52+ A2 [1 +a-niE)f ]

ayr = w
Tl 52 4 a2 1+ (1 —r)ipel

b (/67_> 1-— pT 5'? + A2
ML = -
a ) 1=p \&2+ A2 [1+(1-n)lak]

where A = 0o,/ (1 —@p) and pt is the Plim of the autoregressive parameter of X; implied
by equation (10).

Proof: See the discussion above. Computation of the Plims abundantly resorts to the mo-
ments and cross-moments reported in Appendix 1.

Parameter A? can be interpreted as the fraction of the variance of Y; explained by Z;.
We verify that, in the case 7 = 1, all estimators of o are asymptotically unbiased, so that
agmMm1 = agumme = apr = wy. Similarly, all estimators of b are asymptotically unbiased,
up to the scale factor a, since bgararn = bamme = b, = 5/a.

The first term of the Plim of the estimator of ay is the asymptotic value of oy when the
model is correctly specified, while the second term reflects the mis-specification bias. Assessing
the bias in b involves comparing the estimator to (3/a, since X; may be a good proxy for Z,
yet having a parameter a different from 1. In addition, X; being only a proxy of Z;, b may be
viewed as an estimator of (37/a). Two sources of bias operate for GMM estimators: The first
bias comes from 7 being less than one, which measures whether X; is a good proxy for Z;. The
second bias, which comes from the second term between brackets, measures the extent of the
mis-specification bias. For the ML estimator of b, a third source of bias exists. It comes from
the expression (1 — p7) / (1 — p), which reflects the mis-measurement in the serial correlation
of the forcing variable. This component always affects the Plim of the estimator positively.
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We now provide the ranking of the Plims of GMM and ML estimators in the typical case
where the serial correlation of the forcing variable (p) is positive.

Corollary 1 When 0 < p <1, the following inequalities hold:

1/4
1/2

< agmmi Swy
< ayp Swp<agum2 <1

and when (p— 1) (1= ¢1p)* (1= p)* < p (1= ¢}) [(1 = 7) Fo2 /02
1/4 < aguan < app, < wy.
In addition, the following inequalities hold:

bammz < (B1/a) < bann < barr-

These inequalities are readily obtained by comparing terms between brackets in the nu-
merator and denominator of each expression. Bounds for the Plims of estimators of a; are
obtained, under stationarity, by choosing bounds for structural parameters wy (0.5 and 1), p
(0 and 1), and 7 = 02 = 0.13

We observe that, in the case p = 0, we have agyy = apyr = wy, (and baapan =
bur = B/a), while agyare > wy and baayare < B/a. The absence of bias for GMM1 and
ML derives from orthogonality between the forcing variable and Y; 1, since p = 0 implies
E(ZYi—1) = E(XY;—1) = 0. As for GMMI, in the general case (p # 0), the upward bias
in the coefficient of Y;_1 (i.e., 1 — agama) reflects the information content of Y;_; on the
omitted variable Z; (because p # 0 implies E (Z;Y;—1) # 0, see Appendix 1). When p = 0, the
bias vanishes. The bias also vanishes for the ML estimator, because under condition p = 0
we have E (Z:Y;—1) = E (X:Y;—1) = 0, so that regressors in the reduced form are orthogonal.
Hence, parameter ¢ is estimated without bias, and so is the structural parameter recovered
from parameter oy = 1/ (1 + ). In the case of the GMM2, however, an upward bias in ay
is still present. Indeed, this bias is related to E (Yz+1Z:) being different from zero (see the
discussion below), which generally remains true when p = 0.

Result 2: In the case of measurement error of the type described by equations (2), (3), and
(8), when 0 < p <1, ML and GMM2 estimators of oy are always biased asymptotically
in opposite directions with respect to the true value of parameter wy.

3.1.2 Evidence and discussion

Table 2 presents Plims of GMM and ML estimators in the measurement-error case, using
formulae reported in Proposition 1. We select as structural parameters w; = {0.55;0.75;0.95},
p = {0.1;0.5;0.9}, 6 = {0.1;1}, a = 1, and 0,/0. = 1. Last, we choose 7 = {0.1;0.5;0.9},
which represents the extent to which the variable X; is a good proxy for Z;. Parameter 7
plays presumably a crucial role regarding asymptotic biases.

13 These bounds are reported in the bottom part of Table 2.
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As regards parameter ay, illustrating Proposition 1, GMMI1 and ML estimators are sys-
tematically lower than the true value wy, while the GMM2 estimator is systematically larger
than wy. Since the estimators are bounded by 0.5, GMMI1 and ML biases are, as expected,
very small when wy is equal to 0.55 and, conversely, the GMM2 bias is very small when wy
is equal to 0.95. The ranking of GMM1 and ML depends on the values of model parameters.
When wy is small, we obtain a larger bias in GMMI1 than in ML. In contrast, when wy is
large, the GMM1 bias is smaller than the ML bias.

As expected, the lower the quality of the proxy, the larger the bias in ay. An interesting
result is that, for low values of 7 and p, the GMM2 bias in ay can be extremely large. For
instance, for 7 = p = 0.1 and 3 = 1, when the true forward-looking parameter is in fact
0.55, the Plim is as high as 0.84, so that the dependent variable Y; would be claimed to be
an essentially forward-looking process. Conversely, the ML estimator can be severely biased
for low value of 7 and large value of p. For 7 = 0.1, p = 0.9, and 8 = 1, when Y; is in fact
essentially forward-looking (wy = 0.95), the Plim is 0.53, so that the forward-looking weight
would be claimed to be at its lower bound.

Last, concerning parameter b, the reported Plims illustrate the ranking highlighted in
Corollary 1, since they are systematically larger for the ML estimator than for the GMM
estimator. In addition, they are very close to 57 when wy is large (0.75 or 0.95), but they
are likely to be very far from the true parameter for small wy. It is worth emphasizing that
negative Plims for the estimator of b are precluded (except for a < 0).

To summarize, under measurement error, GMM estimation can lead to an over-estimation
of the degree of forward-lookingness. The bias is potentially large. This finding echoes the
result obtained by Rudd and Whelan (2001), although these authors considered omitted vari-
ables rather than measurement errors. Note that our set-up is, in some respect, more general
since both the DGP and the estimated equation are hybrid models, while Rudd and Whelan
considered the case of a purely backward-looking DGP and a purely forward-looking estimated
equation. The crucial feature in the two cases is that a positive GMM bias occurs when the
relevant forcing variable is not introduced as regressor in the model, but is included in the
instrument set. The mechanics is that actual future inflation used in the first-stage regression
captures the effect of the (omitted) relevant variable. Then, the second-stage regression tends
to put an excessive weight on the fitted value Yt+1. In contrast, the bias in the ML estimator
is related to the standard omitted-variable bias: Estimating equation (11) by OLS puts an
excessive weight on Y; 1, since Y;_1 is, in cases we consider, positively correlated with Z;. The
result that the biases of the GMM and ML estimators are in opposite directions with respect
to the true value of parameter wy may be a step towards rationalizing empirical conflicts. !

!4The finding that biases are in opposite directions seems to be specific to the present context, where the
expectation term in the equation of interest relies on the lead of the LHS variable. In the alternative case where
the expectation term is the lead of another variable, such a result is less likely to hold. This issue is left for
further research.
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3.2 Mis-specification of type II: Omitted dynamics
3.2.1 Analytical results

We now consider mis-specification stemming from omitted dynamics. To illustrate this case,
the true DGP is assumed to include two lags of the dependent variable:

Yi = wiEYi -l-ngt—l + (1 —wy — wé) Yi_o+BZ; + & (17)
Zy = pli1+w,

where the sum of parameters pertaining to lags and lead of inflation is equal to one. The
reduced form of this model is thus

Y = 1Yo + Yo+ 07 + &, (18)

where parameters ¢, and @, are related to the roots of the characteristic polynomial given
by (1—wfL ' —wiL — (1 —ws —w}) L?). The roots are given by ¢ = (1 —wy)/wy, @y =
(1 —wy —wi)/wy, and 3 = 1. In addition, we have § = 3/ (ws(1 — p)), and & = &¢/w; with
52
forcing variable) are known to be 1 — ¢ — ¢y >0, 1 + ¢ — @y > 0, and g > —1 (see e.g.

= o2 /w?c Stationarity conditions of an AR(2) process such as in equation (18) (without

Hamilton, 1994, p. 17-18). These conditions are equivalent to the following conditions for the
structural parameters (2 —3w; —wi) < 0 and —w; < w} < 1 in addition to |p| < 1.

Figure 1 displays, in the plane {wy, wi }, the shaded area where the reduced-form equation
(18) is stationary. In addition, to be consistent with the theoretical derivation of the hybrid
model, we maintain the assumption that wy < 1 (or, equivalently, ¢; > 0). This yields
the triangular area ABC. The segment BC corresponds to the case of non-stationarity with
©1 + w9 = 1. Along this segment, wg decreases from 1 to —1/3. The segment AB is associated
with wy = 1. This segment allows degrees of persistence ¢; + ¢, ranging from —1 (when
wi =1and w? = —1) to 1 (when w} = —1 and w? = 1). Notice that choosing w} = 1 does
not imply any restriction upon persistence of Y;, since w; may itself vary. This translates to
the segment CA being consistent with ¢; + ¢, ranging from 1 to —1 (w} ranges from —1/3
to —1). Finally, the assumption that wy, w}, and w? are all in [0, 1] would imply to restrict
to the area DEF defined by (wy,wi) = {(1,0),(2/3,0),(1/2,1/2)}. This area is probably the
most interesting one for economic interpretation.

The econometrician is assumed to erroneously select a single-lag specification, so that the
estimated (mis-specified) model is a one-lag hybrid model:

Yi=arEYip1 + (1 —ap) Y1 +0Z; + vy, (19)

along with the dynamics of the forcing variable (3). There is no mis-specification in the limiting
case where @, = 0, i.e. wy +w} = 1.

GMM as well as ML estimators can be built quite similarly to the case with measure-
ment error. We consider two instrument sets for GMM estimators. Estimator GMMI1 is
based on the instrument set {Y;_1, Z; }, while estimator GMM?2 is based on the instrument set
{Yi-1,Yi—2, Z;}, which includes the omitted variable Y;_s.
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GMM1. Estimator GMMI relies on the following moment conditions:

ElYi1- (Y —ag¥i — (1—ap) Y1 —bZ)] = 0 (20)
EZ- (i —aYi — (1 —ap) Yies —0Z)] = 0. (21)

As in the measurement-error case, since the model is just identified, the Plims of the estimators
of ay and b are obtained by solving the two moment conditions directly. Note that the
instruments are not valid in this context, since they are correlated with the error term.

GMM2. Estimator GMM2 includes {Y;_1, Y;_2, Z:} leading to an over-identified parameter
set, with the property that the omitted variable appears in the instrument set. Note that
GMM2 mimics actual practice of GMM of introducing several lags of the relevant variables in
the instrument set. As in the case of measurement error, this estimator is built as a two-step
estimator. First, Yz;1 is regressed on the instrument set to build the expectation of Y41
conditional on the information set, yielding Y;41 = (9% + p9) Vi1 + 0192Yi—2 + 0 (01 + p) Zt.
Then, the following equation is estimated by OLS:

i —Yi1=qay (i}tJrl - Ytq) + bZ + v;.

Plims of estimators of a; and b are thus obtained by solving the two following moment

conditions:
E|(Yir1=Yi1) - (Vi —aVin —(1—ap) Yo 1 —b2Z)] = 0 (22)
E [Zt (Vi — Vs — (1= ag) Vi1 — bZt)] = 0. (23)

ML. The ML estimator is obtained by estimating the reduced form of the postulated model
(19) together with equation (3), that is:

Yi=9Yi1 +pZe + 0

where ¢ = (1 —ay) /ay, p = b/ (ay(1 —1)), and ¥y = vs/ay. Parameters ¢ and p are
estimated by OLS, so that their Plims are given by

E(Z}) E (YYi1) — E(YiZ) E (ZYi)
E(Z})E(Y?) - E (ZtYthl)Q
E(Y?)E(Y:Z) — E(ZY; 1) E (YiYy 1)

E(Z}) E (Y?) — E(ZYi-1) ‘

ML =

Harr

Then, the Plims of the ML estimators of oy and b are given by the conditions ay =1/ (1 + ¢)
and b = pay (1 — p).

The Plims of each estimator are summarized in Proposition 2.

Proposition 2 (Plim of estimators in case of omitted dynamics) Let us assume that
the DGP is given by equations (3) and (17). Assume that the econometrician estimates the
model omitting the second lag of Y, corresponding to the model given by equations (3) and
(19). Then, the three estimators have the following Plims:
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- GMM estimator with instrument set {Yi_1,Z;} (GMM1):

( 1 )<&§+A2[1+s02p(—1+s01—@2+s02p)}>

aAGgMM1 =

1+¢1— @9 &2+ A2[1+ @op (01 + 9op)]
beam = 8 <(1 o) (L—pp —p(o1 + 9o + @2/})))
(1 =010 = 2p%) (141 — o)

~ e 2 _ 24
X Ug i A% [1 T P2p ((’01 + (’02p) 1—¢2fpl(’)¢1i2£2+£2p)}
G2+ A2[1+ pap (91 + op)]
- GMM estimator with the instrument set {Yi_1,Yi_o, Z:} (GMM?2):

1—p1—p1¢9

~ A — 149 —pot
. ( 1= o) — o100 ) 02+A2[1+g02p P1—P9 sz}

AGM M2 D) 2 ~ _ — 2
1— i —pipy— @ ~2 2 201 Pat+pap—psp
RCEEREA U [1 M s }
o = B (14+¢1) (1 =1 =9 — p(1 =1 — 1909) (1 + P2 + Pap))
(1 =10 —92p?) (1 — 97 — P12 — 3)

~2 | X2 01 (14+p)(1—p1 — ) +99p(2+p—201 p—pyp)
oz + A [1 T 2P g — (=1 =192 (1 + o+ 20p) }

X
~2 | %9 —2¢192+P2p—P3p
oz +A [1 P }
- ML estimator:
~2 | A2 201 +pap(1=p9)
apML = < o > U€~+ : [1 it }
L1 =) \ 624+ A2[1+@op (1 + @1 + (1 + p) ¢3)]
bar = ﬁ< (1 + 1) (1~ 9o — pp1) )
(1= @1p = 92p?) (1 + 1 — )
- % 201 =02 ptpap— -
) (,g + A2 [1 +oup %1 %fﬂfj’ipgfiw p}

52+ A2[1+ pop (1 + ¢y + (14 p) 93)]

where A = 00,/ (1 —p1p — p2p°) .

Proof: See the discussion above. The computation of the Plims is based on the moments and

cross-moments reported in Appendix 2.

We verify that, in the case ¢, = 0, all estimators are asymptotically unbiased, since this
case imply agyman = agume = apmr = 1/ (1+¢;) = wy. Since we are primarily interested
in the effect of omitting a lag, we consider more specifically the case p = 0, which corresponds
to the forcing variable being a pure white noise. We then obtain the following corollary.

Corollary 2 In the case p =0, Plims of estimators of ay and b are respectively given by

1

agMM1 = m

1~ P2
o 1= — P19
GMDM?2 1— 2 _ 2 _

P — P1P2 — P2
1—y
a = —
ME I4+¢1— ¢
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and

o = 9 ((E20=22)
vy = 3
L+¢1—¢o
b _ ((1+901)(1—901—902)>
GMM?2 — ﬁ 1 2 2
—P1 T P1P2 — P2
1+ 1-—
bur = B (( £1) { SOQ)) =bamm-
L+¢1—¢o

The following inequalities hold (provided 0 < ¢, + g < 1):

1/2 <apyp Swyp <aguin < agume < +0o if @9 >0 (area A)

1/3 <agmmn < agume <wyp <apyp <1 if w9 < 0and ¢ <1 (area B)

1/4 < aguan Swp < agume < app <2/3 if oo € [=1;¢]and vy > 1 (area C)
1/4 <agumn Swp <aypp < agumz <1/2 if o5 € [®;0]and ¢ > 1 (area D)

and
0 <bgmamz <boyvmv =bur < B if w320
banrar2 < B8 <baman = bur if 2 <0

with @ = (1 —?) / (14 ¢? — 1), which is negative when ¢, > 1.

Areas A to D mentioned in Corollary 2 are depicted in Figure 2. In many applications, it
is expected that ¢, >0 (i.e., wg > 0). This is the case in particular for the new Phillips curve,
where additional lags are likely to have a positive cumulative effect. In this context, GMM
and ML estimates are thus biased in opposite directions with respect to the true parameter
wy. For many other cases (for instance, in the modelling of output gap), one would obtain
Y9 < 0 with ¢; > 1. In such a context, both GMM2 and ML estimators are biased upwards
with respect to the true parameter.

Result 3: In case of omitted dynamics of the type described by equations (3), (17), and
(19), when p =0 and wy > 0.5 (corresponding to areas A and B in Figure 2), ML and
GMDM?2 estimators of oy are asymptotically biased in opposite directions with respect to
the true value of parameter wy. When wy < 0.5 (corresponding to areas C and D), ML
and GMM2 estimators of oy are asymptotically biased upwards with respect to the true

value of parameter wy.

Setting p = 0 may appear as an overly strong assumption, as compared with the serial
correlation typically obtained for the forcing variable of some hybrid models. It is noteworthy,
however, that the ranking of the Plims of ML and GMM estimators is unaltered for most
parameter sets, as is confirmed by the following Result 4.

Result 4: Whatever p > 0, for all parameter sets considered, the ranking of GMM and ML
estimators is ay < agumt < agume when oo > 0, and agyan < aguve < anr
when py < 0 (except for the very thin area D). Moreover the following additional result
is analytically shown to hold: caprr, < wyp when @y >0, and wy < aprr, when @y < 0.
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3.2.2 Evidence and discussion

The interpretation of the ranking reported in Corollary 2 and Result 4 is analogous to the
measurement-error case. Indeed, the omission of variable Y; o creates a downward bias in the
GMM1 and ML estimators of the forward-looking parameter, through the correlation of Y;_o
with Y;_1. In contrast, the GMM2 estimator suffers from an upward bias because 57;5+1 partly
captures the effect of the omitted variable.

However, the quantitative importance of the biases is somewhat different from the case
with measurement error. Table 3 presents the Plims of GMM and ML estimators using
formulae reported in Proposition 2. We select several pairs for {w f,wé}, corresponding to
interesting areas in Figure 1 (the selected points are displayed in the figure). The chosen
values correspond to a wide range of persistence (¢; + ¢5) of the dependent variable. We also
consider p = {0;0.5;0.9}, and # = {0.1;1}. We only report results when o, /0. = 1, because
it has been found to have only marginal effects on estimators.

The results reported in Table 3 contrast rather sharply with those reported in the case
of measurement error. An important difference is that very large biases are likely to occur
whatever the true value of wy. When the forward-looking component is very low (wy = 0.4),
with a large persistence, which mimics the results of Fuhrer (1997) for the new Phillips curve,
the estimator of o is biased towards 0 for GMM1, but towards 1 for GMM2 and ML. Biases
are rather moderate, however, since the Plim of the estimator of oy ranges between 0.3 and
0.6, whatever the estimation procedure. On the other side, when wy = 0.8, which is close to
the results of Gali and Gertler (1999), we obtain that GMM estimators are severely biased
when the missing lag has a large positive parameter. In those cases, the Plim of the estimator
of ay is as high as 1.6 for GMMI and 2.2 for GMM2 when w? = 0.5. Contrasting with these
extreme outcomes, the ML estimator displays only moderate biases.

We also notice that increasing the first-order correlation of Z;, (p), induces an increase
in the ML bias, but a decrease in the GMM bias. Yet, in most cases, estimators remain
asymptotically biased in the opposite directions with respect to wy as in the case p = 0. In
addition, the way an increase in p affects the gap between GMM and ML estimators depends
on the sign of the omitted-variable parameter wgz When wg < 0, an increase in p results in an
increase in the gap between estimators, while, conversely, when w? > 0, the gap is reduced by
an increase in p.

In sum, the ML estimators of ay and b are rather moderately biased even for extreme
cases. This result contrasts with those obtained for the GMM estimators which are likely to
display sizeable biases in cases of a large forward-looking component, when a large positive
weight on the second lag is present.

4 A model with feedback

This section addresses the case when some feedback from the dependent variable towards the
forcing variable is allowed. This issue is of particular interest for several reasons. First, it is
likely that the dynamics of the forcing variable is related to the dependent variable. In the
case of the hybrid Phillips curve, the real marginal cost depends on inflation quite naturally
(see Sbordone, 2002). Also in an inflation/output-gap model, some feedback from inflation
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towards the output gap should be expected through the effect of the real interest rate in the
[-S curve. Second, a feedback effect allows to consider a wider interval for the weight of the
forward-looking component. Indeed, when Z; is strictly exogenous, only values of wy larger
than 0.5 are consistent with stationarity of the DGP with a single lag. When there exists a
feedback from Y;_1 to Z;, all values of wy in its authorized domain [0;1] are consistent with
stationarity, provided the feedback effect has a sign opposite to that of 3.

4.1 The DGP
The DGP we consider is

Vi = wiEBYii+ (1 —wy) Y1 + 682 + & (24)
Zy = pZy1+vYi1+u, (25)

where error terms have the same properties has in model (2) and (3). In this set-up, Z; remains
predetermined in the equation for Y; and is weakly (rather than strongly) exogenous for pa-
rameters wy and 3. Such a feedback model cannot be solved analytically. The (autoregressive)
reduced-form solution can be obtained using a numerical procedure, such as those proposed by
Anderson and Moore (1985), Soderlind (1999), or Klein (2000).'5 The ML approach therefore
consists, at each step of the optimization procedure, in computing the reduced form using one
such procedure, and then in maximizing the log-likelihood of the reduced form. The standard
GMM estimation approach still applies as such.

The aim of this section is twofold. First, we study the finite-sample biases in a correctly-
specified model with feedback. As claimed above, when the forcing variable is strongly exoge-
nous, stationarity of the DGP requires wy > 0.5. In such a set-up, we obtained in Section 2.3
that the GMM estimator of w; has a negative bias in case of weak instrument relevance or
instrument redundancy, while the ML estimator does not display any noticeable bias. Allow-
ing the true parameter wy to be lower than 0.5 gives the opportunity to extend these previous
results. Second, we aim at measuring the asymptotic bias in a mis-specified model when wy
is smaller than the bounds above (1/2 with a single lag and 1/3 with two lags). This is an
important issue, since several authors have advocated that the forward-looking component
may be in fact very small (see Fuhrer, 1997, or Fuhrer and Rudebusch, 2002).

4.2 Finite-sample bias in the correctly-specified model

As in the case without feedback, we begin with a brief investigation of the finite-sample
properties of GMM and ML estimators in a correctly-specified model. We select the following
parameter values for our baseline case: wy = 0.25, p = 0.75, and 02 = 02 = 1. We choose
wy = 0.25 because the main interest for allowing feedback is to consider a low value of wy.
Such a value has been found to be plausible in Fuhrer (1997) in the case of the Phillips curve.
We select values of §in {0.1;1} and v in {—0.5; —0.1}. The value of v = —0.5 is taken from
Fuhrer and Rudebusch (2002). It is arguably large, but our purpose is to illustrate the effect

!5 An alternative estimation procedure has been recently put forward by Kurmann (2002) in a closely related
context, following the approach originally developed by Sargent (1979). This approach relies on estimating a
VAR model for the two variables including the variable of interest Y;. Yet, the VAR parameters are estimated
under the constraints imposed by the rational-expectation equation (here, the hybrid equation).
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of feedback towards the forcing variable. Other values considered are wy = {0.5;0.75} and
p =1{0.5;0.75;0.9}.

Table 4 reports results for GMM (with 0 and 7 lags in the instrument set) and for ML,
with sample size T = 100. We also report the Plim of OLS estimators (computed from a
simulation with 7' = 100,000). For w; = 0.5 and 0.75, we find similar results to the case
without feedback, so we focus on the case wy = 0.25 only. Our main findings are as follows.

First, the GMM bias is negligible for 3 = 1 and moderate for 3 = 0.1. This is because the
GMM estimator is biased in direction of the OLS estimator. When § = 0.1, the Plim of the
OLS estimator is very close to 0.5, so that the median of the GMM estimator ranges between
0.3 and 0.5. Yet, when 3 = 1, the Plim of OLS is much closer to 0.25, so that even OLS is
nearly unbiased.

Second, in some instances, ML appears to suffer from a noticeable finite-sample bias. This
bias is related to the finite-sample bias in the OLS estimator of the autoregressive parameter
in an AR(1) model (see, e.g., Sawa, 1978). The bias is substantial only when the autoregressive
root of the univariate process for Y; is large, i.e. when wy is small. However, given the form
of the nonlinear function between the AR parameter and the estimated structural parameter,
a small bias in the AR root translates into a noticeable bias in ay. ML also experiences low
performance, when p is low, because of weak empirical identification. Indeed in this case, Z;
can hardly be distinguished from Y;_;.

Last, the estimator of b is generally biased towards 0 when § = 0.1, while it is biased
upwards when 3 = 1. These biases are moderate, however.

To sum up, the main conclusions found previously extend to this more plausible case.
With GMM, the finite-sample bias in the estimator of oy is generally positive. It is worth
emphasizing, however, that the parameter is biased towards 0.5 and not towards 1. Therefore,
it cannot account for the contrast between GMM and ML estimates reported in the literature.

4.3 Asymptotic bias in the case of mis-specification

We now concentrate on the size of the bias in GMM and ML estimators in case of mis-
specification. We consider measurement error and omitted dynamics in turn.

4.3.1 Measurement error

In case of measurement error, the assumed DGP is given by equations (24), (25), and (8),
which we repeat for reader’s convenience:

i = wiEBYii+ (1 —wyp) Y1+ BZ; + &
Zy = pli1+yYi1+w
Xy = aZ;+ey,

while the econometrician erroneously estimates

Y;g = OffEtY;:Jrl + (1 - Off)Y;ffl + bXt + v
Xy = VX1 + kY1 +wy.
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The baseline parameters are, as previously, wy = 0.25, p = 0.75, and 0, /0. = 1. We also
select values of v in {—0.5; —0.1}, 5 in {0.1; 1}, and 7 in {0.1;0.5;0.9}. Since asymptotic biases
cannot be computed analytically in this set-up, they are computed using a large Monte-Carlo
simulation (7" = 25,000) for each experiment.

Table 5 reports the results of these simulations. As a preliminary comment, it is worth
emphasizing that, unlike the model without feedback of Section 3, both GMM and ML esti-
mators are now biased upwards when the forward-looking component is chosen to be very low
(wy = 0.25). The bias in ay is moderate when the quality of the proxy, 7, is large, with a
bias smaller than 0.1. In contrast, when 7 is chosen to be small (7 = 0.1), we obtain sizeable
biases, as high as 0.3 for the GMM as well as the ML estimators. By and large, biases are
found to be located in a similar range for the three estimators. As expected, biases are much
smaller when the forward-looking parameter w; is equal to 0.5 or 0.75.

In all cases, the estimator of the parameter of the forcing variable (b) is found to be biased
towards 0. The bias decreases with the quality 7 of the proxy.

4.3.2 Omitted dynamics

In case of omitted dynamics, the DGP is given by:

Vi = @BV +wYio+ (1-wp—w}) Yo+ B2 +2
Zy = pZia+7Yio1 + o,

while the econometrician estimates the (mis-specified) model given by equations (24) and (25).

The baseline parameters are unchanged, except for the weight of the lag and lead compo-
nents (w f,wg, wg), for which we consider several different sets, with (0.65,0.35,0) correspond-
ing to the case with no mis-specification.

Table 6 reports the results of these simulations. Interestingly, we notice that biases are
very substantial for GMM estimators, even when the weight of the omitted lag is low. (An
exception being the case with no mis-specification). For instance, when wy = 0.5, wé = 0.25,
and w? = 0.25, we obtain a Plim of the estimator of ay equal to 0.97 for GMM2, and 0.58
for ML. The Plim of GMM estimator is often higher than 1, even when w; < 0.5, so that the
econometrician would reject the hybrid model in favor of a purely forward-looking model. In
addition, biases are particularly large for the GMM2 estimator. The Plim of the estimator oy
is found to be larger than 1 in all instances but two cases, corresponding to the lowest weights
on the second lag. These results also provide an extension to Corollary 2: The ML bias is in
most cases much smaller than the GMM bias. The ranking of Plims of estimators with respect
to the true value of parameter wy does not hold anymore, however.

When the absolute value of the feedback parameter v decreases, the GMM bias increases
systematically. The case 0 = 1 helps to reduce persistence in the system, so that biases are
in general much lower than for § = 0.1.

A further interesting result is that the Plim of the GMM estimator of b is found to be
negative in many instances. This is the case in particular when the weight wg is positive and
large and when the parameter of the forcing variable is small (G = 0.1). Also the bias in b is
much larger for GMM2 than for GMMI1.
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Result 5: In a model with feedback, measurement error is very unlikely to fill the gap between
parameter estimates obtained by GMM and ML. In contrast, a limited amount of mis-
specification in the form of an omitted dynamics may produce discrepancies between
GMM and ML estimators of the degree of forward-lookingness that are in excess of 0.5.

5 Rationalizing evidence on the hybrid Phillips curve

This section illustrates results obtained in the previous sections, using them to reexamine
estimates of the New Keynesian Phillips curve.

5.1 Estimating the hybrid Phillips curve

The baseline hybrid inflation model is the following;:
Ty = WrEm +wpmi—1 + B2 + &4 (26)

where m; is the inflation rate and Z; is the real marginal cost. Parameters wy and wy are
positive with wy 4wy < 1. This model has been proposed originally by Chadha, Masson, and
Meredith (1992). Two proxies for real marginal cost have been considered in the literature:
the output gap and the real ULC. With output gap as a forcing variable, this model nests
as special cases the traditional Phillips curve (wy = 0), the Taylor (1980) forward-looking
Phillips curve (wy = 1), and the Fuhrer and Moore (1995) model with two-period contracts
(wy = 1/2). With real ULC as a forcing variable, this model is very close to the hybrid Phillips
curve put forward by Gali and Gertler (1999) or Christiano, Eichenbaum, and Evans (2001).

Although several recent work has focused on the real ULC instead of output gap as a proxy
for the real marginal cost, we resort to the traditional forcing variable, because it provides a
more interesting illustration of our theoretical results. In particular, the real ULC was not
found to be caused by inflation (cf. also Kurmann, 2002), while output gap has long been
found to be related to inflation (see Rudebusch, 2002). The dynamics of the output gap
is adequately modelled with three own lags and three lags of inflation.'® We thus consider
equation (26) together with:

3 3
Zy = ZPiZt—i + Z’Yﬂ?t—i + uy. (27)
i=1 i=1

As indicated previously, Gali and Gertler (1999) have derived the hybrid Phillips curve
assuming that some firms set their price optimally in a sticky-price framework. Following
Calvo (1983), only a fraction of firms is allowed to reset their price, at each date. Some of
these firms use a backward-looking rule of thumb, while the others are forward-looking. In
such a context, the sum of the backward and forward-looking terms lies theoretically between
0and 1, where ¢ is the discount factor. Therefore, wy + wy should be very close to 1 for any

16 A standard modelling of the output-gap dynamics typically incorporates the real interest rate instead of
inflation. Introducing an additional equation corresponding to the monethary authorities’ reaction function
would, however, veil the interpretation of our empirical evidence in the light of our theoretical results. Our
specification (27) may therefore be interpreted as a reduced-form equation.
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plausible value of 6. In the application below, we impose w + wp, = 0.99 in equation (26), a
restriction which is very close to the one adopted by Gali and Gertler (6 = 0.99).

We define W; = (7, Z;)' and 1, = (g4, u)'. As previously, innovations 7, are assumed to be
serially uncorrelated, with E (n;n}) = X if ' = ¢ and 0 otherwise. Yet, the contemporaneous
covariance matrix X is allowed to have a non-zero covariance between ¢; and u;, denoted .
Unknown parameters are gathered together in & = {wy, B, 1., P1, P25 P35 V1> V2> V3> 25 T2y Ten }-

As regards GMM and ML estimation procedures, we consider slight departures from the
framework described in previous sections, in order to follow the standards of the empiri-
cal literature. Consistently with the non-zero covariance between e; and w;, valid instru-
ments are dated ¢ — 1 or earlier only. For estimator GMM?2, the instrument set contains
{Wt_l,Wt_g,Wt_g}, while GMMI1 estimator is obtained when additional lags of inflation
(beyond ;1) are omitted. Following the approach adopted by Gali and Gertler (1999), we
compute the GMM weighting matrix using the Newey and West (1987) procedure with a
bandwidth of 4 lags.

Concerning the ML approach, equations (26) and (27) are estimated simultaneously, using
the procedure developed by Anderson and Moore (1985) to compute the reduced form of the

model
3

W, =" B;Wi; + Bon,, (28)
j=1
where By is the matrix of contemporaneous coefficients. Therefore, the concentrated log-

e NT
likelihood function for sample {Wt}t—l is defined as follows:

InL (&) = —T[1 +In (27)] gln 5] + % In | B3|

where 3 = %Z;le 7, (€) 7, (€)' is the estimated covariance matrix of residuals. The log-
likelihood function is maximized using the BFGS algorithm of the GAUSS Constrained Max-
imum Likelihood package procedure.

Estimation is performed on US data, over the sample period 1960:1-2000:1V. Inflation is
defined as the annualized quarterly percent change in the implicit GDP deflator. The output-
gap measure computed as the deviation of GDP from a trend with a break in slope in 1973:1V.
Empirical estimates of the baseline hybrid model are reported in Table 7.

In spite of some differences in sample period and instrument set, results in the table
are broadly in accordance with previous estimates. The ML estimation provides a significant
impact of output gap (with the expected positive sign) and the backward-looking component
is dominant. The estimate of the forward-looking parameter (w; = 0.45) is larger than the
parameter obtained by Fuhrer, since his estimates of wy range from 0.02 to 0.20. This evidence
contrasts quite sharply with estimates performed with GMM which both point to a dominant
forward-looking component (wy = 0.66 for GMM1 and 0.70 for GMM2). In addition, GMM
estimates suggest a negative, yet non-significant, parameter of output gap.

Overall, our estimations reveal that, with our data and our mere framework, the gap
between GMM?2 and ML estimates of wy is as high as 0.25. Such a contrast across estimation
methods has already been found by Jondeau and Le Bihan (2001) and Lindé (2001).

Finally, residual check does not point to a clear-cut mis-specification. On one hand, the
Hansen J-statistic for over-identifying restrictions does not reject the null hypothesis for the
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GMM estimations, while, on the other hand, statistics for ML residuals reveal a slight serial
correlation of the Phillips-curve residuals. In addition, the positive gap between GMM2 and

ML estimates of wy is very suggestive of a missing lag, as indicated in previous sections.'”

5.2 Towards filling the gap

In order to investigate the consequences of omitted dynamics, we consider now the following
DGP in which inflation depends on several own lags:

3
T = wrEmeg + Zwém_i + BZs + &4 (29)
i=1
3 3
Zt = Z piZi—i + Z’Yﬂt—z’ + u, (30)
i=1 i=1

where the restricted model (with omitted dynamics) is obtained by setting wg = w% =08
As indicated in Section 3, such a model has been considered in several studies. For instance,
Rudebusch (2002), Mavroeidis (2001), and Gali, Gertler, and Lépez-Salido (2001) estimate
such a model, while Fuhrer (1997), Coenen and Wieland (2000), Roberts (2001), or Kozicki
and Tinsley (2002) introduce, in addition, leads of inflation. Kozicki and Tinsley (2002) also
review several interpretations of such a specification.

Table 8 reports ML estimates of model (29) and (30). It indicates that the weight of the
forward-looking component is as low as 0.4. The third lag is also found to be significant. The
serial correlation of residuals found in the model with a single lag has disappeared, although
the serial correlation of squared residuals remains.

We now investigate the source of the discrepancy between the two estimation methods
using some Monte-Carlo simulations. Our previous experiments in Sections 3 and 4 have
highlighted that only a moderate value of wy with an omitted dynamics can help to reconcile
the Plims of estimators with empirical evidence. In this case, indeed, we would obtain a
significant bias in GMM as well as ML estimators, but the GMM estimator would be more
biased towards 1 than the ML estimator. Therefore, we assume that the ML estimation of
the model with three lags of inflation provides a rough description of the true DGP. The DGP
used in Monte-Carlo simulations is thus the model (29) and (30) with the parameter estimates
reported in Table 8. We simulate 2000 samples of size T" = 160 of this DGP. Then, we estimate
the model with one single lag and lead using GMM as well as ML estimation procedures. If
the true DGP is close to our simulated DGP, we expect the parameter estimates to be close
to those found on US data.

Table 9 reports the median and the MAD of the finite-sample properties of the estimators.
The ranking obtained for the three estimators is in accordance with the theoretical analysis as
well as with the empirical results presented above. As indicated in Result 4 in the case without

1"We performed the same exercice with real ULC in place of output gap as forcing variable. We obtained
very similar results. In particular, we found a discrepancy between GMM2 and ML estimators as high as 0.17.

8We illustrate our theoretical results focusing on a mis-specification due to omitted dynamics instead of
measurement error for two reasons. First, the gap between GMM and ML estimators of wy was found to be
larger in the former case than in the latter case. Second, it is much more convenient to specify a DGP with
additional lags: Lags are readily introduced in the assumed DGP, while a plausible measurement error would
be much more difficult to design.
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feedback (Section 3), we obtain the ranking apr < agymami < agaraz. The discrepancy
between ajsr and agprare is as high as 0.15, suggesting that the gap found on US data may
well be due, to a great extent, to omitted dynamics. The fact that the three estimators are
found to be larger than the true value of the parameter (w; = 0.4) may be explained by the
feedback effect of the inflation rate towards output gap. This is consistent with Monte-Carlo
simulations presented in Section 4.

Finally, it should be noticed that omitted dynamics cannot explained the whole discrepancy
between GMM?2 and ML estimators found with historical data. This may be explained by a
number of reasons. In particular, there may be, in addition, a measurement error in the
forcing variable, which would exacerbate the discrepancy. Also, departure from iidness and/or
normality may partly fill the unexplained gap.

6 Conclusion

This paper has analyzed the properties of GMM and ML estimators in hybrid models. Our
motivation was the gap between the large degree of forward-looking behavior typically found
when implementing GMM and the low degree of forward-lookingness obtained by ML. Our
findings can be summarized as follows. First, finite-sample biases are not able to fill the gap
between empirical estimates. The GMM bias is small unless a large number of redundant
variables are used. Furthermore, the bias is towards the Plim of the OLS which is typically
close to 0.5, and the estimator is biased towards a lower value than the ML estimator in finite
sample.

Second, plausible mis-specifications can produce substantial differences between the two
estimators. In particular, in case of measurement error, GMM can be moderately biased
towards 1. Analytical results establish that, in a simple model with a strongly exogenous
forcing variable, asymptotic GMM and ML biases of the degree of forward-lookingness are in
opposite directions with respect to the true value of the parameter.

In case of omitted dynamic, the GMM estimator is likely to be severely biased towards
very large values in case of a large forward-looking components. In many plausible cases,
biases of GMM and ML point to opposite directions. While this latter property does not
carry on necessarily to more elaborate models with feedback, we still find, in the case of mis-
specification in models with feedback, that GMM is generally more widely biased than ML in
a way that is likely to fill the gap between empirical estimates.

Results in the present paper point to one critical source of the discrepancy in estimators
of a hybrid equation: That a relevant forcing variable is omitted from the estimated equation
but included in the GMM instrument set. Such an instance, rather likely if a large number of
instruments is used, will cause the lead of the dependent variable to capture the effect of the
omitted variable, and its parameter to be over-estimated. In the type of set-up analyzed here,
mis-specification of the equation of interest is typically found to be more harmful to the GMM
estimator than to the ML estimator. This finding to some extent balances the well-known
fact that in rational-expectation models, ML may, unlike GMM, suffer from mis-specification
of the auxiliary model.

Our theoretical results are used to rationalize differences in estimates of the hybrid Phillips
curve found in the literature. Small mis-specification (such as omitting one relevant lag, even
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with a modest parameter value, in the inflation dynamics) turns out to imply substantial
over-estimation of the degree of forward-lookingness found by the GMM estimator. The ML
appears to be much less severely biased in this context.

Results in this paper may be extended in several directions. First, they suggest that a test
for mis-specification in the hybrid model may be based on the difference between ML and
GMM?2 estimates, since the two estimators are typically biased in opposite directions with
respect to the true value of the forward-looking parameter. Second, future research could
investigate whether the motivation for discrepancy in estimators outlined here is also relevant
in other empirical applications.
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Appendices
Appendix 1: Moments and cross-moments in the model with a single lag

This Appendix reports several moment and cross-moment coefficients implied by the DGP
(2), (3), and (8). These results are useful to compute the moment conditions. Moments of Z;
and cross-moments with Y; are:

2
g
E(Z?) = Yo =03
( t) 1'— p2 z
E(ZiZi-i) = ploy,
fo2
E(ZY;) = Z_ =T,
L—¢p
E(ZY;1) = plo
E(Y:Zi—1) = ¢l +9p02z.
Moments involving Y; only are:
52 1+ ¢p
E(Y?) = + 1207 = g
( t ) 1-— SO% 1-— 901
E(Y;Yio1) = ¢1%Po+0plo
E(YiYi2) = ©i®o+0p (e +p)To.

Finally, moments of X; and cross-moments with Y; are:
E (Xf) = d?0% + o2
E(X:Xi—1) = pa (TQZ
E(XyYi ) = aE(ZY; ) Vi.

Appendix 2: Moments and cross-moments in the model with two lags

Moments of Z; are the same as in Appendix 1, while cross-moments with Y; are:

ok ~
E(ZY,) = 2 =Ty
L—p1p—ap
E(ZY, ;) = p'Ty, foralli>0
E(YiZio1) = (p1+@ep)To+0po%.

Moments involving Y; only are:

B (v?) = (L= )2+ [o1p(L+02) + (1= o) (L+¢0p?)] 00 _ 5
! (14 @) (1 =1 = @2) (1 + 1 — ¢3)
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Captions

Table 1: This table reports summary statistics on the finite-sample distribution of the es-
timators of the model with a single lag. Parameter sets are wy = {0.55;0.75;0.95}, p =
{0.1;0.5; 0.9}, 8 = {0.1;1}, and 0. = 0, = 1. The median and the MAD of the estimator
distribution are computed over 2000 samples of size T = 100. Estimation methods are GMM
(with L = 0 and 7 lags of W; = {Y;_1, Z;} as instrument sets) and ML. The Plim of the OLS
estimator is also computed, with a sample of 100,000 observations.

Table 2: This table reports the Plim of GMM and ML estimators in the case of measurement
error. Parameter sets are wy = {0.55;0.75;0.95}, p = {0.1;0.5;0.9}, 7 = {0.1;0.5;0.9},
6 ={0.1;1}, a =1, and 0. = 0, = 1. The Plims are computed using Proposition 1. Bounds
for the Plims of estimators of ay are obtained for w; = {0.5;1}, p = {0;1}, and 7 = 0. = 0.

Table 3: This table reports the Plim of GMM and ML estimators in the case of omitted
dynamics. Several pairs of {w f,wg} are selected, as displayed in Figure 1. Other parameter
sets are p = {0;0.5;0.9}, 6 = {0.1; 1}, 0= = 0, = 1. The Plims are computed using Proposition
2. Bounds for the Plims of estimators of af are obtained for {ws;w}} = {4; B;C}, p = {0;1},
and 0. = 0.

Table 4: This table reports summary statistics on the finite-sample distribution of the es-
timators in the feedback model with a single lag. The baseline parameter set is given by
wy = 0.25, p = 0.75, B = {0.1;1}, v = {-0.5;-0.1}, and 0. = 0, = 1. Other values con-
sidered are wy = {0.5;0.75}, and p = {0.5;0.9}. The median and the MAD of the parameter
distribution are computed over 2000 samples of size T' = 100. Estimation methods are GMM
(with L = 0 and 7 lags of Wi = {Y;_1, Z:} as instrument sets) and ML. The Plim of the OLS
estimator is also computed, with a sample of 100,000 observations.

Table 5: This table reports the Plim of GMM and ML estimators in the feedback model
with measurement error. The baseline parameter set is given by: w; = 0.25, p = 0.75,
B =1{0.1;1}, vy = {-0.5;-0.1}, 7 = {0.1;0.5; 0.9}, and 0. = 0, = 1. Other values considered
are wy = {0.5;0.75}, and p = {0.5;0.9}. The Plims are computed with a sample of 25,000
observations.

Table 6: This table reports the Plim of GMM and ML estimators in the feedback model
with omitted dynamics. The baseline parameter set is given by: w; = 0.33, wi =033, p=
{0.5;0.75; 0.9}, B = {0.1;1}, and v = {-0.5; 0.1}, ando. = 0, = 1. Other values con-
sidered are wy = {0.25;0.50;0.65;0.75}. The Plims are computed with a sample of 25,000
observations.

Table 7: This table reports GMM and ML estimates of the hybrid Phillips curve with a
single lag over the period 1960:1-2000:1V. The instrument sets are {Y;_1, Z¢—1,Zt—2, Z1_3}
for GMM1 and {Y; 1,Y; 2,Y: 3,24 1,72 2,7 3} for GMM2. J-stat denotes the Hansen’s
statistic for the test of over-identifying restrictions, InL is the sample log-likelihood and see is
the standard error of estimates. @ (4) is the Ljung-Box statistic for the test that the first 4
serial correlations of residuals are jointly zero. R (1) is the Engle statistic for the test that the
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first serial correlation of squared residuals is zero. J-B is the Jarque-Bera test statistic for the
null of normality.

Table 8: This table reports ML estimates of the hybrid Phillips curve with three lags over
the period 1960:1-2000:1V. InL is the sample log-likelihood and see is the standard error of
estimates. @ (4) is the Ljung-Box statistic for the test that the first 4 serial correlations of
residuals are jointly zero. R (1) is the Engle statistic for the test that the first serial correlation
of squared residuals is zero. J-B is the Jarque-Bera test statistic for the null of normality.

Table 9: This table reports summary statistics on the finite-sample distribution of the GMM
and ML estimators of the model with a single lag when the DGP is in fact a hybrid model
with three lags. The DGP corresponds to the model (29) and (30) with parameters reported in
Table 8. The finite-sample distribution is obtained using Monte-Carlo simulations with 2000
samples of size T' = 160. The distribution is summarized using the median and the MAD.

Figure 1: This figure displays, in the plane {wf,w}, the domain of validity of the hybrid
model with two lags. The shaded area corresponds to the domain of stationarity of an AR(2)
process. The area ABC corresponds to the additional constraint that wy < 1. The are DEF
corresponds to the domain where 0 < w f,wg,wg < 1. The six points in the figure are the pairs
{wf,wi} selected for Table 3. Last, we denote w = {wy,w},w?} and ¢ = {1, Py}

Figure 2: This figure displays, in the plane {w f,w;}, the areas corresponding to the different
rankings between Plims of GMM and ML estimators, as reported in Corollary 2.
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Table 1: Finite-sample properties of estimators in the model with a single lag

Struct. parameters  Statistic Panel A: =0.1 Panel B: =1
GMM (L=0) GMM (L=7) ML Plim OLS GMM (L=0) GMM (L=7) ML Plim OLS

Gy P i B Gy B i B Gy B Wy B Gy B Gy B Wy B

0.55 0.1 median 055 010 052 010 055 010 050 0.11 054 101 042 124 055 100 034 136
MAD 0.06 008 006 0.09 002 0.05 0.08 018 007 020 001 012

0.55 0.5 median 055 010 052 012 055 0.10 049 0.12 054 105 047 132 055 101 032 188
MAD 0.06 005 006 007 001 003 0.06 028 006 034 000 018

0.55 0.9 median 055 011 053 014 055 011 047 0.19 055 115 053 138 055 111 046 2.02
MAD 0.03 006 003 0.07 000 0.04 0.03 058 003 0.72 000 047

0.75 0.1 median 0.75 011 068 0.11 0.75 0.10 050 0.12 0.75 101 065 105 075 1.00 043 117
MAD 0.09 0.10 008 012 006 007 0.08 0.15 0.07 016 003 014

0.75 0.5 median 0.5 010 068 011 0.75 0.10 050 0.12 074 101 066 108 0.75 101 044 125
MAD 0.09 0.07 008 008 005 0.04 0.07 018 006 022 002 018

0.75 0.9 median 0.74 011 068 0.12 0.75 0.11 049 0.3 0.75 107 069 116 075 1.07 048 1.33
MAD 0.06 005 006 006 003 0.05 0.05 044 005 053 000 044

0.95 0.1 median 095 009 083 010 095 010 050 0.11 094 100 082 101 095 100 049 1.03
MAD 0.13 0.13 012 014 009 0.09 011 o0.17 010 0.19 0.06 016

0.95 0.5 median 095 010 083 0.10 096 0.10 050 o0.11 094 102 082 103 095 102 049 1.04
MAD 0.13 0.08 011 010 009 0.05 0.10 0.19 009 021 004 018

0.95 0.9 median 094 011 083 011 095 0.11 050 0.10 094 109 083 110 095 110 050 1.06
MAD 0.12 0.05 010 0.06 006 0.05 009 045 008 050 001 044




Table 2: Plim of estimators in the case of measurement error

Structural parameters Panel A: 5=0.1 Panel B: f=1
GMM1 GMM2 ML GMM1 GMM2 ML
e p T ay b ay b ay b ay b ay b ay b
0.55 0.10 0.10 0.55 0.01 0.56 0.01 0.55 0.01 0.52 0.10 0.84 0.05 0.55 0.11
0.55 0.10 0.50 0.55 0.05 0.56 0.05 0.55 0.05 0.54 0.51 0.76 0.31 0.55 0.52
0.55 0.10 0.90 0.55 0.09 0.55 0.09 0.55 0.09 0.55 0.90 0.61 0.80 0.55 0.91
0.55 0.50 0.10 0.54 0.01 0.58 0.01 0.55 0.02 0.41 0.15 0.70 0.04 0.52 0.17
0.55 0.50 0.50 0.54 0.05 0.57 0.05 0.55 0.07 0.49 0.62 0.66 0.29 0.53 0.69
0.55 0.50 0.90 0.55 0.09 0.55 0.09 0.55 0.10 0.54 0.94 0.58 0.79 0.55 0.97
0.55 0.90 0.10 0.40 0.03 0.57 0.01 0.51 0.04 0.37 0.30 0.57 0.07 0.50 0.37
0.55 0.90 0.50 0.50 0.08 0.56 0.04 0.52 0.16 0.50 0.79 0.57 0.42 0.52 1.51
055 0.90  0.90 054 010 055 009 054 0.5 054 097 055 087 054  1.47
0.75 0.10 0.10 0.75 0.01 0.75 0.01 0.75 0.01 0.72 0.10 0.87 0.09 0.73 0.11
0.75 0.10 0.50 0.75 0.05 0.75 0.05 0.75 0.05 0.73 0.50 0.82 0.48 0.74 0.52
0.75 0.10 0.90 0.75 0.09 0.75 0.09 0.75 0.09 0.75 0.90 0.76 0.89 0.75 0.91
0.75 0.50 0.10 0.74 0.01 0.76 0.01 0.74 0.02 0.57 0.11 0.83 0.09 0.61 0.13
0.75 0.50 0.50 0.74 0.05 0.75 0.05 0.74 0.07 0.65 0.54 0.80 0.48 0.66 0.58
0.75 0.50 0.90 0.75 0.09 0.75 0.09 0.75 0.10 0.73 0.91 0.76 0.89 0.73 0.94
0.75 0.90 0.10 0.57 0.01 0.76 0.01 0.53 0.02 0.45 0.14 0.77 0.10 0.52 0.14
0.75 0.90 0.50 0.66 0.06 0.76 0.05 0.57 0.09 0.60 0.59 0.76 0.49 0.54 0.69
0.75 0.90 0.90 0.73 0.09 0.75 0.09 0.67 0.12 0.72 0.93 0.75 0.90 0.65 1.07
0.95 0.10 0.10 0.95 0.01 0.95 0.01 0.95 0.01 0.91 0.10 0.97 0.10 0.91 0.10
0.95 0.10 0.50 0.95 0.05 0.95 0.05 0.95 0.05 0.93 0.50 0.96 0.50 0.93 0.51
0.95 0.10 0.90 0.95 0.09 0.95 0.09 0.95 0.09 0.95 0.90 0.95 0.90 0.95 0.90
0.95 0.50 0.10 0.94 0.01 0.95 0.01 0.93 0.02 0.72 0.10 0.97 0.10 0.70 0.11
0.95 0.50 0.50 0.94 0.05 0.95 0.05 0.94 0.07 0.82 0.51 0.96 0.50 0.78 0.54
0.95 0.50 0.90 0.95 0.09 0.95 0.09 0.95 0.10 0.93 0.90 0.95 0.90 0.91 0.92
095 090 0.10 074 001 095 001 057 002 055 010 095 010 053 0.11
0.95 0.90 0.50 0.84 0.05 0.95 0.05 0.62 0.09 0.73 0.51 0.95 0.50 0.56 0.53
0.95 0.90 0.90 0.93 0.09 0.95 0.09 0.80 0.12 0.91 0.90 0.95 0.90 0.73 0.93
Bounds

0.50 0.00 0.00 0.50 1.00 0.50

0.50 1.00 0.00 0.25 0.50 0.50

1.00 0.00 0.00 1.00 1.00 1.00

1.00 1.00 0.00 0.50 1.00 0.50




Table 3: Plim of estimators in the case of omitted dynamics

Structural parameters Panel A: £=0.1 Panel B: =1
GMM1 GMM2 ML GMM1 GMM2 ML
e aibl C(Jbz ¢1+¢2 P as b as b as b a¢ b a¢ b a¢ b
0.40 0.90 -0.30 0.75 0.00 0.31 0.13 0.53 0.05 0.54 0.13 0.31 1.35 0.53 0.53 0.54 1.35
0.40 0.90 -0.30 0.75 0.50 0.32 0.26 0.52 0.07 0.54 0.18 0.36 2.28 0.50 0.86 0.55 1.88
0.40 0.90 -0.30 0.75 0.90 0.42 0.33 0.51 0.20 0.58 0.20 0.42 3.24 0.51 1.97 0.59 2.07
0.60 0.25 0.15 0.92 0.00 0.71 0.09 0.86 0.07 0.53 0.09 0.71 0.88 0.86 0.71 0.53 0.88
0.60 0.25 0.15 0.92 0.50 0.67 0.06 0.81 0.01 0.53 0.08 0.61 0.77 0.67 0.56 0.52 0.78
0.60 0.25 0.15 0.92 0.90 0.54 0.07 0.55 0.06 0.52 0.07 0.54 0.71 0.55 0.62 0.52 0.71
0.60 0.75 -0.35 0.08 0.00 0.44 0.12 0.52 0.11 0.70 0.12 0.44 1.17 0.52 1.09 0.70 1.17
0.60 0.75 -0.35 0.08 0.50 0.46 0.15 0.53 0.14 0.71 0.12 0.50 1.47 0.56 1.40 0.76 1.33
0.60 0.75 -0.35 0.08 0.90 0.53 0.16 0.59 0.16 0.80 0.12 0.55 1.63 0.61 1.60 0.83 1.29
0.80 -0.30 0.50 0.88 0.00 1.60 0.08 2.17 0.06 0.60 0.08 1.60 0.75 2.17 0.57 0.60 0.75
0.80 -0.30 0.50 0.88 0.50 1.42 -0.03 1.99 -0.12 0.58 0.06 0.93 0.38 1.27 -0.12 0.54 0.54
0.80 -0.30 0.50 0.88 0.90 0.61 0.03 0.67 -0.01 0.52 0.04 0.60 0.37 0.63 0.11 0.52 0.44
0.80 0.10 0.10 0.38 0.00 0.89 0.10 0.89 0.10 0.78 0.10 0.89 0.97 0.89 0.97 0.78 0.97
0.80 0.10 0.10 0.38 0.50 0.88 0.09 0.88 0.09 0.77 0.10 0.83 0.91 0.83 0.90 0.74 0.91
0.80 0.10 0.10 0.38 0.90 0.79 0.08 0.79 0.08 0.72 0.09 0.78 0.86 0.78 0.86 0.72 0.86
0.80 0.50 -0.30 -0.13 0.00 0.62 0.11 0.63 0.11 0.85 0.11 0.62 1.06 0.63 1.05 0.85 1.06
0.80 0.50 -0.30 -0.13 0.50 0.63 0.12 0.64 0.12 0.86 0.10 0.68 1.21 0.70 1.21 0.93 1.16
0.80 0.50 -0.30 -0.13 0.90 0.71 0.13 0.73 0.13 0.98 0.11 0.74 1.30 0.76 1.30 1.02 1.21
Bounds

1.00 1.00 -1.00 -1.00 0.00 0.50 0.50 1.00

1.00 1.00 -1.00 -1.00 1.00 0.50 0.50 1.00

1.00 -1.00 1.00 1.00 0.00 infinite infinite 1.00

1.00 -1.00 1.00 1.00 1.00 0.50 infinite 0.50

0.33 1.00 -0.33 1.00 0.00 0.25 0.50 0.50

0.33 1.00 -0.33 1.00 1.00 0.25 0.50 0.50




Table 4: Finite-sample properties of estimators in the model with feedback

Structural parameters Statistic Panel A: =0.1 Panel B: =1
GMM (L=0) GMM (L=7) ML Plim OLS GMM (L=0) GMM (L=7) ML Plim OLS

bt 4 y Wt B G B G B G B wr B g B g B g B

0.25 0.50 -0.50 median 0.42 0.05 048 003 039 0.06 049 0.02 025 101 022 105 025 101 0.15 114
MAD 0.13 005 0.04 002 010 0.04 0.04 008 0.04 009 0.04 008

0.25 0.75 -0.50 median 040 005 046 003 034 0.08 049 0.02 025 100 023 104 025 100 0.17 114
MAD 0.11 004 004 0.02 0.09 0.03 0.03 0.07 003 0.08 0.03 0.07

0.25 0.90 -0.50 median 0.33 0.08 043 0.04 029 0.09 048 0.02 025 101 023 104 025 101 0.18 1.13
MAD 0.09 003 0.04 002 0.08 003 0.03 006 003 006 0.03 0.06

050 0.75 -0.50 median 049 011 047 012 050 011 043 0.14 049 102 044 107 050 101 029 112
MAD 0.06 004 004 0.04 0.05 0.03 0.04 0.08 004 008 0.03 0.08

0.75 0.75 -0.50 median 0.74 0.11 065 014 0.75 0.10 043 0.23 0.73 101 064 106 0.75 100 035 134
MAD 0.06 004 0.06 004 0.05 003 0.06 009 0.05 010 0.04 0.09

0.25 050 -0.10 median 047 004 049 003 043 0.05 050 0.03 025 100 026 100 025 101 0.26 0.99
MAD 0.12 005 003 0.03 0.07 0.04 0.05 012 005 012 0.05 0.12

0.25 0.75 -0.10 median 0.48 0.03 049 0.02 042 0.05 049 0.02 025 101 025 102 025 101 0.24 1.03
MAD 0.11 005 0.03 002 0.07 003 0.04 011 0.04 011 0.04 0.10

0.25 090 -0.10 median 045 003 049 001 038 0.06 049 o0.01 025 100 025 102 025 100 0.23 1.05
MAD 0.11 004 003 0.02 0.07 0.03 0.03 0.08 003 008 0.03 0.08

050 0.75 -0.10 median 050 0.11 049 011 051 0.0 0.48 0.07 049 102 046 110 050 101 033 135
MAD 0.04 005 0.03 004 0.03 003 0.03 010 0.03 010 0.03 0.09

0.75 0.75 -0.10 median 0.74 010 067 012 0.76 010 0.49 0.16 0.73 102 066 107 075 102 044 120
MAD 0.06 004 005 004 0.04 0.02 0.04 012 004 013 0.03 0.11




Table 5: Plim of estimators in the feedback model with measurement error

Structural parameters Panel A: =0.1 Panel B: =1
GMM1 GMM2 ML GMM1 GMM2 ML
[0 P T y as b as b as b as b as b as b
0.25 0.75 0.10 -0.50 0.47 0.00 0.52 0.00 0.54 0.01 0.44 0.07 0.61 0.04 0.66 0.07
0.25 0.75 0.50 -0.50 0.42 0.02 0.50 0.01 0.46 0.03 0.37 0.40 0.52 0.28 0.52 0.38
0.25 0.75 0.90 -0.50 0.31 0.07 0.43 0.03 0.32 0.07 0.28 0.86 0.34 0.77 0.31 0.84
0.50 0.75 0.50 -0.50 0.54 0.04 0.57 0.04 0.59 0.06 0.56 0.47 0.66 0.42 0.69 0.47
0.75 0.75 0.50 -0.50 0.75 0.05 0.77 0.04 0.79 0.08 0.78 0.50 0.85 0.48 0.86 0.53
0.25 0.50 0.10 -0.50 0.50 0.00 0.53 0.00 0.53 0.00 0.53 0.06 0.68 0.04 0.70 0.07
0.25 0.50 0.50 -0.50 0.49 0.01 0.53 0.00 0.49 0.02 0.44 0.37 0.57 0.27 0.55 0.36
0.25 0.50 0.90 -0.50 0.37 0.06 0.44 0.04 0.36 0.06 0.30 0.84 0.36 0.77 0.32 0.83
0.25 0.90 0.10 -0.50 0.41 0.01 0.51 0.00 0.52 0.01 0.40 0.07 0.57 0.04 0.64 0.08
0.25 0.90 0.50 -0.50 0.37 0.03 0.49 0.01 0.43 0.04 0.35 0.41 0.49 0.28 0.51 0.38
0.25 0.90 0.90 -0.50 0.28 0.08 0.42 0.04 0.30 0.08 0.27 0.86 0.32 0.77 0.30 0.83
0.25 0.75 0.10 -0.10 0.48 0.00 0.53 0.00 0.50 0.01 0.34 0.07 0.58 0.02 0.53 0.08
0.25 0.75 0.50 -0.10 0.43 0.02 0.51 0.01 0.43 0.03 0.31 0.43 0.54 0.13 0.43 0.39
0.25 0.75 0.90 -0.10 0.35 0.06 0.47 0.02 0.34 0.07 0.26 0.88 0.39 0.58 0.29 0.85
0.50 0.75 0.50 -0.10 0.51 0.05 0.55 0.03 0.53 0.08 0.46 0.55 0.61 0.39 0.53 0.61
0.75 0.75 0.50 -0.10 0.73 0.05 0.76 0.05 0.74 0.10 0.66 0.52 0.79 0.48 0.74 0.55
0.25 0.50 0.10 -0.10 0.50 0.00 0.56 0.00 0.50 0.00 0.40 0.07 0.65 0.02 0.52 0.08
0.25 0.50 0.50 -0.10 0.45 0.02 0.55 0.00 0.42 0.03 0.34 0.40 0.61 0.12 0.42 0.39
0.25 0.50 0.90 -0.10 0.35 0.07 0.44 0.04 0.35 0.07 0.28 0.85 0.43 0.58 0.29 0.84
0.25 0.90 0.10 -0.10 0.43 0.00 0.52 0.00 0.49 0.01 0.30 0.08 0.54 0.02 0.52 0.08
0.25 0.90 0.50 -0.10 0.40 0.02 0.51 0.00 0.41 0.04 0.28 0.45 0.51 0.13 0.42 0.39
0.25 0.90 0.90 -0.10 0.30 0.07 0.47 0.02 0.30 0.08 0.26 0.87 0.38 0.56 0.29 0.84




Table 6: Plim of estimators in the feedback model with omitted dynamics

Structural parameters Panel A: =0.1 Panel B: =1
GMM1 GMM2 ML GMM1 GMM2 ML

wy @yt wy? P y ay b ay b ay b ay b ay b ay b

0.33 0.33 0.34 0.50 -0.50 1.10 -0.09 1.46 -0.18 0.57 0.00 0.76 0.71 0.73 0.73 0.55 0.78
0.33 0.33 0.34 0.75 -0.50 1.06 -0.10 1.32 -0.17 0.56 0.01 0.67 0.60 0.63 0.64 0.51 0.69
0.33 0.33 0.34 0.90 -0.50 0.87 -0.07 1.15 -0.15 0.50 0.02 0.59 0.58 0.56 0.61 0.47 0.66
0.25 0.25 0.50 0.75 -0.50 1.62 -0.17 2.03 -0.25 0.61 0.00 0.88 0.38 0.75 0.49 0.55 0.57
0.50 0.00 0.50 0.75 -0.50 1.59 -0.21 1.89 -0.29 0.71 -0.03 1.18 0.58 0.96 0.71 0.74 0.77
0.50 0.25 0.25 0.75 -0.50 0.88 -0.06 0.97 -0.10 0.58 0.04 0.72 0.79 0.70 0.80 0.59 0.84
0.65 0.35 0.00 0.75 -0.50 0.65 0.10 0.65 0.10 0.65 0.10 0.66 1.00 0.66 1.00 0.65 1.00
0.75 0.75 -0.50 0.75 -0.50 0.46 0.36 0.48 0.34 0.70 0.23 0.41 1.48 0.38 151 0.53 141
0.75 -0.50 0.75 0.75 -0.50 4.09 -0.51 3.46 -0.38 1.17 0.02 4.74 0.83 1.58 1.51 1.92 1.60
0.33 0.33 0.34 0.50 -0.10 0.94 -0.03 1.59 -0.16 0.47 0.03 0.59 0.52 0.76 0.32 0.42 0.61
0.33 0.33 0.34 0.75 -0.10 1.04 -0.10 1.59 -0.22 0.49 0.02 0.49 0.46 0.58 0.30 0.39 0.54
0.33 0.33 0.34 0.90 -0.10 0.90 -0.09 1.44 -0.23 0.47 0.02 0.42 0.47 0.47 0.37 0.37 0.52
0.25 0.25 0.50 0.75 -0.10 1.46 -0.13 211 -0.24 0.52 0.01 0.59 0.24 0.85 -0.10 0.39 0.39
0.50 0.00 0.50 0.75 -0.10 1.47 -0.20 2.24 -0.40 0.53 0.02 0.75 0.31 0.80 0.24 0.49 0.50
0.50 0.25 0.25 0.75 -0.10 0.78 -0.05 1.05 -0.17 0.50 0.04 0.58 0.64 0.60 0.61 0.48 0.69
0.65 0.35 0.00 0.75 -0.10 0.65 0.11 0.65 0.11 0.65 0.10 0.65 1.00 0.65 1.00 0.65 1.00
0.75 0.75 -0.50 0.75 -0.10 0.51 0.20 0.55 0.19 0.83 0.11 0.55 1.53 0.56 1.52 0.81 1.33

0.75 -0.50 0.75 0.75 -0.10 3.19 -0.49 4.07 -0.68 0.68 0.04 1.62 -0.06 1.18 0.27 0.70 0.56




Table 7: GMM and ML estimates of the hybrid Phillips curve with a single lag

ML
GMM1 GMM2 - .

Phillips curve Output-gap equation

Parameter std dev. Parameter std dev. Parameter std dev. Parameter std dev.

Gy 0.664 0.120 0.697 0.119 Wy 0.451 0.035 Y1 0.055 0.059
(7 0.326 0.120 0.293 0.119 Gy 0.539 0.035 Va2 -0.110 0.067
B -0.027 0.043 -0.036 0.043 B 0.037 0.019 Y3 0.024 0.062
P1 1.033 0.077

Qo -0.069 0.111

O3 -0.163 0.076
stat. p-value stat. p-value stat. p-value stat. p-value

J-stat - 4.645 0.326 InL -412.82
see 0.631 see 0.727

Q4 4.130 0.042 Q4 0.046 0.831

R(1) 5.208 0.023 R(1) 0.432 0.511

J-B 0.443 0.801 J-B 2.460 0.292




Table 8: ML estimates of the hybrid Phillips curve with three lags

Phillips curve

Output-gap equation

Parameter std dev. Parameter std dev.
@y 0.401 0.143 Y1 0.074 0.055
wp? 0.468 0.097 |23 -0.101 0.067
wp? -0.082 0.096 Y3 -0.010 0.056
wp? 0.202 0.069 P1 1.024 0.075
B 0.102 0.058 P2 -0.072 0.110
P3 -0.157 0.076
stat. p-value stat. p-value
InL -402.74
see 0.745 see 0.727
Q) 0.168 0.682 Q) 0.029 0.865
R(1) 8.054 0.005 R(1) 0.503 0.478
J-B 2.321 0.313 J-B 2.363 0.307




Table 9: Finite-sample properties of estimators evaluated by Monte-Carlo simulations

GMM1 GMM2 ML
Median MAD Median MAD Median MAD
Wy 0.559 0.042 0.600 0.052 0.455 0.029
wy? 0.431 0.042 0.390 0.052 0.535 0.029
B 0.019 0.015 0.004 0.020 0.034 0.011




Figure 1: Domain of validity of the hybrid model with two lags
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Figure 2: Areas for the different rankings of Plims of estimators in the hybrid model with two lags
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